Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 15(9)2023 Apr 30.
Article in English | MEDLINE | ID: mdl-37177289

ABSTRACT

Water electrolysis coupled with renewable energy is one of the principal methods for producing green hydrogen (or renewable hydrogen). Among the different electrolysis technologies, the evolving anion exchange membrane water electrolysis (AEMWE) shows the utmost promise for the manufacture of green hydrogen in an inexpensive way. In the present review, we highlight the most current and noteworthy achievements of AEMWE, which include the advancements in increasing the polymer anionic conductivity, understanding the mechanism of degradation of AEM, and the design of the electrocatalyst. The important issues affecting the AEMWE behaviour are highlighted, and future constraints and openings are also discussed. Furthermore, this review provides strategies for producing dynamic and robust AEMWE electrocatalysts.

2.
Nanomaterials (Basel) ; 13(6)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36986018

ABSTRACT

The development of battery-type electrode materials with hierarchical nanostructures has recently gained considerable attention in high-rate hybrid supercapacitors. For the first time, in the present study novel hierarchical CuMn2O4 nanosheet arrays (NSAs) nanostructures are developed using a one-step hydrothermal route on a nickel foam substrate and utilized as an enhanced battery-type electrode material for supercapacitors without the need of binders or conducting polymer additives. X-ray diffraction, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques are used to study the phase, structural, and morphological characteristics of the CuMn2O4 electrode. SEM and TEM studies show that CuMn2O4 exhibits a nanosheet array morphology. According to the electrochemical data, CuMn2O4 NSAs give a Faradic battery-type redox activity that differs from the behavior of carbon-related materials (such as activated carbon, reduced graphene oxide, graphene, etc.). The battery-type CuMn2O4 NSAs electrode showed an excellent specific capacity of 125.56 mA h g-1 at 1 A g-1 with a remarkable rate capability of 84.1%, superb cycling stability of 92.15% over 5000 cycles, good mechanical stability and flexibility, and low internal resistance at the interface of electrode and electrolyte. Due to their excellent electrochemical properties, high-performance CuMn2O4 NSAs-like structures are prospective battery-type electrodes for high-rate supercapacitors.

3.
Sensors (Basel) ; 23(2)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36679584

ABSTRACT

Chebulic Myrobalan is the main ingredient in the Ayurvedic formulation Triphala, which is used for kidney and liver dysfunctions. Herein, natural nitrogen-doped carbon dots (NN-CDs) were prepared from the hydrothermal carbonization of Chebulic Myrobalan and were demonstrated to sense heavy metal ions in an aqueous medium. Briefly, the NN-CDs were developed from Chebulic Myrobalan by a single-step hydrothermal carbonization approach under a mild temperature (200 °C) without any capping and passivation agents. They were then thoroughly characterized to confirm their structural and optical properties. The resulting NN-CDs had small particles (average diameter: 2.5 ± 0.5 nm) with a narrow size distribution (1-4 nm) and a relatable degree of graphitization. They possessed bright and durable fluorescence with excitation-dependent emission behaviors. Further, the as-synthesized NN-CDs were a good fluorometric sensor for the detection of heavy metal ions in an aqueous medium. The NN-CDs showed sensitive and selective sensing platforms for Fe3+ ions; the detection limit was calculated to be 0.86 µM in the dynamic range of 5-25 µM of the ferric (Fe3+) ion concentration. Moreover, these NN-CDs could expand their application as a potential candidate for biomedical applications and offer a new method of hydrothermally carbonizing waste biomass.


Subject(s)
Quantum Dots , Terminalia , Carbon/chemistry , Nitrogen/chemistry , Iron , Water/chemistry , Ions , Quantum Dots/chemistry , Fluorescent Dyes/chemistry
4.
Molecules ; 27(22)2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36431792

ABSTRACT

In this manuscript, we are reporting for the first time one dimensional (1D) cerium hydrogen phosphate (Ce(HPO4)2.xH2O) electrode material for supercapacitor application. In short, a simple hydrothermal technique was employed to prepare Ce(HPO4)2.xH2O. The maximum surface area of 82 m2 g-1 was obtained from nitrogen sorption isotherm. SEM images revealed Ce(HPO4)2.xH2O exhibited a nanorod-like structure along with particles and clusters. The maximum specific capacitance of 114 F g-1 was achieved at 0.2 A g-1 current density for Ce(HPO4)/NF electrode material in a three-electrode configuration. Furthermore, the fabricated symmetric supercapacitor (SSC) based on Ce(HPO4)2.xH2O//Ce(HPO4)2.xH2O demonstrates reasonable specific energy (2.08 Wh kg-1), moderate specific power (499.88 W kg-1), and outstanding cyclic durability (retains 92.7% of its initial specific capacitance after 5000 GCD cycles).


Subject(s)
Cerium , Hydrogen , Electrodes , Electric Capacitance , Phosphates
5.
Environ Res ; 214(Pt 2): 113910, 2022 11.
Article in English | MEDLINE | ID: mdl-35870499

ABSTRACT

Recent research is focused on biomass-derived porous carbon materials for energy harvesting (hydrogen evolution reaction) because of their cost-effective synthesis, enriched with heteroatoms, lightweight, and stable properties. Here, the synthesis of porous carbon (PC) materials from lotus seedpod (LP) and lotus stem (LS) is reported by the pyrolysis method. The porous and graphitic structure of the prepared LP-PC and LS-PC materials were confirmed by field emission scanning electron microscopy, transmission electron microscopy with selected area electron diffraction, X-ray diffraction, and nitrogen adsorption-desorption measurements. Heteroatoms in LP-PC and LS-PC materials were investigated by attenuated total reflection-Fourier transform infrared and X-ray photoelectron spectroscopy. The specific surface area of LP-PC and LS-PC were calculated as 457 and 313 m2 g-1, respectively. Nitrogen and sulfur enriched LP-PC and LS-PC materials were found to be effective electrocatalysts for hydrogen evolution reactions. LP-PC catalyst showed a very low overpotential of 111 mV with the Tafel slope of 69 mV dec-1, and LS-PC catalyst achieved a Tafel slope of 85 mV dec-1 with a low overpotential of 135 mV. This work is expected to be extended for the development of biomass as a sustainable porous carbon electrocatalyst with a tunable structure, elements, and electronic properties. Furthermore, preparing carbon materials from the biowaste and applying clean energy harvesting might reduce environmental pollution.


Subject(s)
Carbon , Lotus , Carbon/chemistry , Hydrogen/chemistry , Nitrogen , Porosity , Sulfur
6.
Chemosphere ; 307(Pt 1): 135712, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35843438

ABSTRACT

Hydrogen is one of the cleanest renewable and environmentally friendly energy resource that can be generated through water splitting. However, hydrogen evolution occurs at high overpotential, and efficient hydrogen evolution catalysts are desired to replace state-of-the-art catalysts such as platinum. In the present work, a novel molybdenum disulfide decorated banana peel porous carbon (MoS2@BPPC) catalyst has been developed using banana peel carbon and molybdenum disulfide (MoS2) for hydrogen evolution reaction (HER). Banana peel porous carbon (BPPC) was initially synthesized from the banana peel (biowaste) by a simple carbonization method. Subsequently, 20 wt% of bare MoS2 was distributed on the pristine BPPC matrix using the dry-impregnation method. The resulting MoS2@BPPC composites were systematically investigated to determine the morphology and structure. Finally, using a three-electrode cell system, pristine BPPC, bare MoS2, and MoS2@BPPC composite were used as HER electrocatalysts. The developed MoS2@BPPC composite showed greater HER activity and possessed excellent stability in the acid solution, including an overpotential of 150 mV at a current density of -10 mA cm-2, and a Tafel slope of 51 mV dec-1. This Tafel study suggests that the HER takes place by Volmer-Heyrovsky mechanism with a rate-determining Heyrovsky step. The excellent electrochemical performance of MoS2@BPPC composite for HER can be ascribed to its unique porous nanoarchitecture. Further, due to the synergetic effect between MoS2 and porous carbon. The HER activity using the MoS2@BPPC electrode advises that the prepared catalyst may hold great promise for practical applications.


Subject(s)
Molybdenum , Musa , Carbon , Disulfides , Electrodes , Hydrogen/chemistry , Molybdenum/chemistry , Platinum , Porosity , Water
7.
Nanomaterials (Basel) ; 12(9)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35564227

ABSTRACT

Supercapacitors (SCs), also known as ultracapacitors, should be one of the most promising contenders for meeting the needs of human viable growth owing to their advantages: for example, excellent capacitance and rate efficiency, extended durability, and cheap materials price. Supercapacitor research on electrode materials is significant because it plays a vital part in the performance of SCs. Polyaniline (PANI) is an exceptional candidate for energy-storage applications owing to its tunable structure, multiple oxidation/reduction reactions, cheap price, environmental stability, and ease of handling. With their exceptional morphology, suitable functional linkers, metal sites, and high specific surface area, metal-organic frameworks (MOFs) are outstanding materials for electrodes fabrication in electrochemical energy storage systems. The combination of PANI and MOF (PANI/MOF composites) as electrode materials demonstrates additional benefits, which are worthy of exploration. The positive impacts of the two various electrode materials can improve the resultant electrochemical performances. Recently, these kinds of conducting polymers with MOFs composites are predicted to become the next-generation electrode materials for the development of efficient and well-organized SCs. The recent achievements in the use of PANI/MOFs-based electrode materials for supercapacitor applications are critically reviewed in this paper. Furthermore, we discuss the existing issues with PANI/MOF composites and their analogues in the field of supercapacitor electrodes in addition to potential future improvements.

8.
Polymers (Basel) ; 14(2)2022 Jan 12.
Article in English | MEDLINE | ID: mdl-35054706

ABSTRACT

In recent years, ion electrolyte membranes (IEMs) preparation and properties have attracted fabulous attention in fuel cell usages owing to its high ionic conductivity and chemical resistance. Currently, perfluorinatedsulfonicacid (PFSA) membrane has been widely employed in the membrane industry in polymer electrolyte membrane fuel cells (PEMFCs); however, NafionTM suffers reduced proton conductivity at a higher temperature, requiring noble metal catalyst (Pt, Ru, and Pt-Ru), and catalyst poisoning by CO. Non-fluorinated polymers are a promising substitute. Polysulfone (PSU) is an aromatic polymer with excellent characteristics that have attracted membrane scientists in recent years. The present review provides an up-to-date development of PSU based electrolyte membranes and its composites for PEMFCs, alkaline membrane fuel cells (AMFCs), and direct methanol fuel cells (DMFCs) application. Various fillers encapsulated in the PEM/AEM moiety are appraised according to their preliminary characteristics and their plausible outcome on PEMFC/DMFC/AMFC. The key issues associated with enhancing the ionic conductivity and chemical stability have been elucidated as well. Furthermore, this review addresses the current tasks, and forthcoming directions are briefly summarized of PEM/AEMs for PEMFCs, DMFCs, AMFCs.

9.
Chemosphere ; 289: 133225, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34896173

ABSTRACT

A simple, low-cost, and green route for the preparation of lotus carbon (LC) materials using lotus parts including leaves, flowers, fruits (seed pods), and stems as a renewable precursor is reported. Different porous carbons, leaf-carbon (LF-carbon), flower-carbon (FL-carbon), fruit-carbon (FR-carbon), and stem-carbon (ST-carbon) were synthesized from different parts of the lotus plant by simple carbonization method. The as-synthesized LC materials were well-characterized by many techniques such as electron microscopy and spectroscopy techniques, X-ray diffraction, and BET-surface area analysis. These techniques confirmed the porous structure of LC materials and the existence of heteroatoms in the prepared LC materials. The mesoporous structure of LC materials suggested employing it for the supercapacitor applications. The obtained FR-Carbon exhibits a high specific capacitance of 160 F/g in a three-electrode system in an aqueous 1 M H2SO4 electrolyte with a high rate performance of 52% retention from 0.5 to 5.0 A/g with good cycling stability of 95%. These results indicate that the porous carbon derived from lotus fruits is a potential electrode material for high-performance supercapacitors.


Subject(s)
Carbon , Nitrogen , Biomass , Electric Capacitance , Porosity
10.
Dalton Trans ; 49(48): 17725-17736, 2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33237044

ABSTRACT

Nitrogen-doped carbon dot decorated zinc oxide nanoparticles (N-CDs@ZnO composite) were successfully fabricated by an economical wet-impregnation method and used as a photocatalyst for the degradation of aqueous methylene blue (MB) dye under UV-light at room temperature. The chemical composition and morphological features of the prepared N-CDs@ZnO composite were characterized by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and field emission scanning electron microscopy (FESEM). The photodegradation capability of the N-CDs@ZnO composite was compared with that of bare ZnO nanoparticles, under identical experimental conditions. The results show that the N-CDs@ZnO composite exhibits notably higher photocatalytic activity (degradation efficiency over 99%, 60 min) compared to bare ZnO nanoparticles (75%, 60 min) towards the degradation of MB under UV-light irradiation. Besides, the degradation obeyed the pseudo-first-order kinetics model with a photocatalytic rate constant (k) of 0.0557 min-1, which was ∼2.3 times higher than that of bare ZnO nanoparticles (0.0240 min-1). The crucial roles of N-CDs in the enhancement of the photocatalytic activity of the N-CDs@ZnO composite arise because the N-CDs can efficiently absorb UV-light and trap electrons, thus hindering the recombination of the photo-generated electron-hole pairs and also suppressing the photocorrosion of the ZnO nanoparticles in the N-CDs@ZnO composite. The N-CDs@ZnO composite not only showed good photocatalytic activity but also had good stability since the photocatalytic activity did not significantly decrease after three cycling tests. The present study shows that the N-CDs@ZnO composite can be considered as an ideal photocatalyst in the field of dye degradation. Overall, the present approach obeys green chemistry principles with the simple construction of the N-CDs@ZnO composite and the composite holds promise for the development of efficient photocatalytic systems.

11.
Dalton Trans ; 48(39): 14808-14819, 2019 Oct 07.
Article in English | MEDLINE | ID: mdl-31552971

ABSTRACT

The effect of the cobalt nitrate hexahydrate/zinc nitrate hexahydrate molar ratio on the physicochemical features of the zeolitic imidazole framework (ZIF) was studied. ZIFs were prepared by using 2-methyl imidazole as the cross-linker at room temperature without any additives in methanol solution. From the obtained results, it was found that the Co/Zn ratio has a tremendous impact on the surface area, crystallinity, pore diameter and electrochemical performance of ZIFs. Upon increasing the Co/Zn content the surface area, pore volume, pore diameter and specific capacitance decreased. The maximum BET surface area was found to be 1043.65 m2 g-1 for ZIF Co/Zn = 0.5. The present work offers a new intuition in relation to the role of the Co/Zn ratio in the synthesis method of ZIFs.

12.
Biosens Bioelectron ; 126: 160-169, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30399518

ABSTRACT

In this work, an ultra-sensing photoelectrochemical (PEC) glucose biosensor has been constructed from the bio-derived nitrogen-doped carbon sheets (NDC) wrapped titanium dioxide nanoparticles (NDC-TiO2 NPs) followed by the covalent immobilization of glucose oxidase (GODx) on them (designated as a GODx/NDC-TiO2NPs/ITO biosensor). Initially, the TiO2 NPs was synthesized by sol-gel method and then NDC-TiO2 NPs was synthesized utilizing a green source of Prunus persica (peach fruit) through a simple hydrothermal process. The synthesized NDC-TiO2 NPs composite was characterized by FESEM, HRTEM, Raman spectroscopy, XRD, ATR-FTIR spectroscopy and XPS to determine composition and phase purity. These fabricated GODx/NDC-TiO2NPs/ITO biosensor exhibited a good charge separation, highly enhanced and stable photocurrent responses with switching PEC behavior under the light (λ > 400 nm). As a result, GODx/NDC-TiO2NPs/ITO PEC glucose sensor exhibits a good photocurrent response to detection of glucose concentrations (0.05-10 µM) with an ultra-low detection limit of 13 nM under optimized PEC experimental conditions. Also, the PEC glucose sensor revealed a high selectivity, good stability, long time durability, and capability to analyze the glucose levels in real human serum. Also, the further development of this work may provide new insights into preparing other bio-derived carbon nanostructure-based photocatalysts for PEC applications.


Subject(s)
Biosensing Techniques , Blood Glucose/isolation & purification , Electrochemical Techniques , Glucose/isolation & purification , Blood Glucose/chemistry , Carbon/chemistry , Glucose/chemistry , Humans , Nanoparticles/chemistry , Nitrogen/chemistry , Titanium/chemistry
13.
J Nanosci Nanotechnol ; 14(6): 4639-48, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24738442

ABSTRACT

Chloro-functionalized mesoporous MCM-41, SBA-15, MCM-48 and KIT-6 were synthesized by co-condensation of 3-chloropropyl-trimethoxy-silane (CPTMS) and rice husk ash sodium silicate solution, which is subsequently grafted with a heterocyclic amine, homopiperazine (HPZ). X-ray powder diffraction and BET analysis of the chloro-functionalized mesoporous silicas confirmed the similarity between their structural properties and those obtained from conventional silica sources. CO2 adsorption studies of all HPZ-grafted mesoporous silicas exhibited 8-10 wt% of adsorption capacity and are found to be selective, recyclable and thermally stable. Here, the CO2 adsorption reaction is via the traditional carbamate mechanism. The presence of both secondary and tertiary amine in HPZ influences the high CO2 adsorption capacity. Hence, these HPZ-grafted mesoporous silicas could contribute to CO2 capture as a green, tunable, selective and efficient sorbent.


Subject(s)
Carbon Dioxide/isolation & purification , Coal Ash/chemistry , Nanopores/ultrastructure , Oryza/chemistry , Piperazines/chemistry , Plant Components, Aerial/chemistry , Silicon Dioxide/chemistry , Adsorption , Carbon Dioxide/chemistry , Materials Testing , Piperazine
14.
J Nanosci Nanotechnol ; 13(8): 5522-33, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23882789

ABSTRACT

The present study is aimed at synthesizing a novel anion exchange composite membrane from quaternized polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene [QPSEBS] and functionalized multi walled carbon nanotubes (f-MWCNT) by solution casting method. The characteristic properties of the QPSEBS/f-MWCNT composite membranes were investigated using Fourier transform infrared (FTIR), UV-Visible spectroscopy, thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray diffraction (XRD) studies and Raman spectroscopy. The water uptake, ion exchange capacity, ionic conductivity, methanol permeability and selectivity ratio of the membranes were also studied. The prepared composite membranes were tested in an in-house fabricated alkaline membrane fuel cell (AMFC) set up using Pt/C as the common anode catalyst and three different cathode catalysts namely Pt/C, Pd-Ni/C and Ag/C. Among all the three cathode catalysts, Pt/C for QPSEBS/5% f-MWCNT is found to show the maximum power density and open circuit voltage (OCV) of 187 mW cm(-2) and 0.73 V respectively. For direct methanol alkaline membrane fuel cells (DMAMFC), the OCV of QPSEBS/5% f-MWCNT is found to be 0.76 V and the maximum power density of 59.5 mW cm(-2) is achieved at a current density of 175 mA cm(-2).

SELECTION OF CITATIONS
SEARCH DETAIL
...