Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Viruses ; 16(5)2024 05 02.
Article in English | MEDLINE | ID: mdl-38793604

ABSTRACT

Recent studies highlight the crucial role of the gut microbiome in post-infectious complications, especially in patients recovering from severe COVID-19. Our research aimed to explore the connection between gut microbiome changes and the cytokine profile of patients with post-COVID syndrome. Using 16S rRNA amplicon sequencing, we analyzed the composition of the gut microbiome in 60 COVID-19 patients over the course of one year. We also measured the levels of serum cytokines and chemokines using the Milliplex system. Our results showed that severe SARS-CoV-2 infection cases, especially those complicated by pneumonia, induce a pro-inflammatory microbial milieu with heightened presence of Bacteroides, Faecalibacterium, and Prevotella_9. Furthermore, we found that post-COVID syndrome is characterized by a cross-correlation of various cytokines and chemokines MDC, IL-1b, Fractalkine, TNFa, FGF-2, EGF, IL-1RA, IFN-a2, IL-10, sCD40L, IL-8, Eotaxin, IL-12p40, and MIP-1b as well as a shift in the gut microbiome towards a pro-inflammatory profile. At the functional level, our analysis revealed associations with post-COVID-19 in homolactic fermentation, pentose phosphate, NAD salvage, and flavin biosynthesis. These findings highlight the intricate interplay between the gut microbiota, their metabolites, and systemic cytokines in shaping post-COVID symptoms. Unraveling the gut microbiome's role in post-infectious complications opens avenues for new treatments for those patients with prolonged symptoms.


Subject(s)
COVID-19 , Cytokines , Gastrointestinal Microbiome , SARS-CoV-2 , Humans , COVID-19/immunology , COVID-19/microbiology , COVID-19/complications , COVID-19/blood , Cytokines/blood , Male , Female , Middle Aged , Aged , Adult , RNA, Ribosomal, 16S/genetics , Post-Acute COVID-19 Syndrome , Feces/microbiology , Feces/virology
2.
Pathogens ; 13(3)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38535538

ABSTRACT

Recent studies have suggested that periodontal disease and alterations in the oral microbiome may be associated with cognitive decline and Alzheimer's disease (AD) development. Here, we report a case-control study of oral microbiota diversity in AD patients compared to healthy seniors from Central Asia. We have characterized the bacterial taxonomic composition of the oral microbiome from AD patients (n = 64) compared to the healthy group (n = 71) using 16S ribosomal RNA sequencing. According to our results, the oral microbiome of AD has a higher microbial diversity, with an increase in Firmicutes and a decrease in Bacteroidetes in the AD group. LEfSe analysis showed specific differences at the genus level in both study groups. A region-based analysis of the oral microbiome compartment in AD was also performed, and specific differences were identified, along with the absence of differences in bacterial richness and on the functional side. Noteworthy findings demonstrated the decrease in periodontitis-associated bacteria in the AD group. Distinct differences were revealed in the distribution of metabolic pathways between the two study groups. Our study confirms that the oral microbiome is altered in AD. However, a comprehensive picture of the complete composition of the oral microbiome in patients with AD requires further investigation.

3.
Gerontology ; 70(4): 390-407, 2024.
Article in English | MEDLINE | ID: mdl-38246133

ABSTRACT

INTRODUCTION: The longevity is influenced by genetic, environmental, and lifestyle factors. The specific changes that occur in the gut microbiome during the aging process, and their relationship to longevity and immune function, have not yet been fully understood. The ongoing research of other microbiome based on longevity cohort in Kazakhstan provides preliminary information on longevity-related aging, where cytokine expression is associated with specific microbial communities and microbial functions. METHODS: Metagenomic shotgun sequencing study of 40 long-lived individuals aged 90 years and over was carried out, who were conditionally healthy and active, able to serve themselves, without a history of serious infection and cancer, who had not taken any antimicrobials, including probiotics. Blood serum was analyzed for clinical and laboratory characteristics. The cytokine and chemokine profile in serum and stool samples was assessed using multiplex analysis. RESULTS: We found a significant increase in the expression of pro-inflammatory cytokines IL-1a, IL-6, 12p70, IP-10, IFNα2, IL-15, TNFa, as well as chemokines MIP-1a/CCL3 and MIP-1b/CCL4, chemokine motif ligands MCP-3/CCL7 and MDC/CCL22(1c). Nonagenerians and centenarians demonstrated a greater diversity of core microbiota genera and showed an elevated prevalence of the genera Bacteroides, Clostridium, Escherichia, and Alistipes. Conversely, there was a decrease in the abundance of the genera Ruminococcus, Fusicatenibacter, Dorea, as well as the species Fusicatenibacter saccharivorans. Furthermore, functional analysis revealed that the microbiome in long-lived group has a high capacity for lipid metabolism, amino acid degradation, and potential signs of chronic inflammatory status. CONCLUSION: Long-lived individuals exhibit an immune system imbalance and observed changes in the composition of the gut microbiota at the genus level between to the two age-groups. Age-related changes in the gut microbiome, metabolic functions of the microbial community, and chronic inflammation all contribute to immunosenescence. In turn, the inflammatory state and microbial composition of the gut is related to nutritional status.


Subject(s)
Metagenome , Microbiota , Aged, 80 and over , Humans , Aging , Longevity , Cytokines
4.
J Clin Med ; 12(16)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37629267

ABSTRACT

The aims of this study were to analyze cytokine profiles in patients with COVID-19, gain insights into the immune response during acute infection, identify cytokines associated with disease severity and post-COVID complications, and explore potential biomarkers for prognosis and therapeutic targets. Using a multiplex analysis, we studied the cytokine pattern in 294 acute COVID-19 and post-COVID patients with varying severities of infection. Our findings revealed that disease severity was associated with elevated levels of IL-15, IL-8, and fractalkine. Severe/extremely severe forms in comparison with mild/moderate disease were associated with MCP-1, IFNa2, IL-7, IL-15, EGF, IP-10, IL-8, Eotaxin, FGF-2, GROa, sCD40L, and IL-10. The key cytokines of post-COVID are FGF-2, VEGF-A, EGF, IL-12(p70), IL-13, and IL-6. By the sixth month after recovering from a coronavirus infection, regardless of disease severity, some patients may develop complications such as arterial hypertension, type 2 diabetes mellitus, glucose intolerance, thyrotoxicosis, atherosclerosis, and rapid progression of previously diagnosed conditions. Each complication is characterized by distinct cytokine profiles. Importantly, these complications can also be predicted during the acute phase of the coronavirus infection. Understanding cytokine patterns can aid in predicting disease progression, identifying high-risk patients, and developing targeted interventions to improve the outcomes of COVID-19.

5.
Sci Rep ; 13(1): 9530, 2023 06 12.
Article in English | MEDLINE | ID: mdl-37308527

ABSTRACT

The inconsolable crying of a child for no apparent reason at an early age is a source of excitement and anxiety for parents. Previous studies have reported that crying may be caused by discomfort associated with the occupation of the intestines of the newborn by microbiota and its vital activity. We conducted a prospective observational study in which 62 newborns and their mothers were recruited. The study comprised two groups, each consisting of 15 infants with colic and 21 controls. Colic and control groups were vaginally born and exclusively breastfed. Fecal samples from children were collected over time from day 1 to 12 months. Full metagenomic sequencing of fecal samples from children and their mothers was carried out. It was determined that the trajectory of the development of the intestinal microbiome of children with colic was different from the group without colic. In the colic group, a depleted relative abundance of Bifidobacterium and enrichment of Bacteroides Clostridiales was found, while the microbial biodiversity in this group was enriched. Metabolic pathway profiling showed that the non-colic group was enriched by amino acid biosynthetic pathways, while the feces microbiome of the colic group was enriched by glycolysis metabolic pathways that correlated with the Bacteroides taxon. This study shows that infantile colic has a definite relationship with the microbiome structure of infants.


Subject(s)
Colic , Gastrointestinal Microbiome , Microbiota , Infant, Newborn , Infant , Humans , Child , Amino Acids , Anxiety , Bacteroides
6.
Biochemistry (Mosc) ; 87(10): 1187-1198, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36273887

ABSTRACT

Due to the unique capability of modulating cell membrane potential upon photoactivation, channelrhodopsins of green (Chlorophyta) and cryptophytic (Cryptophyta) algae are widely employed in optogenetics, a modern method of light-dependent regulation of biological processes. To enable the search for new genes perspective for optogenetics, we have developed the PCR tests for the presence of genes of the cation and anion channelrhodopsins. Six isolates of green algae Haematococcus and Bracteacoccus from the White Sea region and 2 specimens of Rhodomonas sp. (Cryptophyta) from the regions of White and Black Seas were analyzed. Using our PCR test we have demonstrated the known Haematococcus rhodopsin genes and have discovered novel rhodopsin genes in the genus of Bracteacoccus. Two distantly homologous genes of anion channelrhodopsins were also identified in the cryptophytic Rhodomonas sp. from the White and Black Seas. These results indicate that the developed PCR tests might be useful tool for a broad-range screening of the Chlorophyta and Cryptophyta algae to identify unique channelrhodopsin genes.


Subject(s)
Cryptophyta , Rhodopsin , Channelrhodopsins/metabolism , Cryptophyta/genetics , Cryptophyta/metabolism , Rhodopsin/genetics , Black Sea , Optogenetics/methods , Anions , Cations
7.
Biochemistry (Mosc) ; 87(12): 1699-1706, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36717458

ABSTRACT

Non-photochemical quenching (NPQ) of excited chlorophyll states is essential for protecting the photosynthetic apparatus (PSA) from the excessive light-induced damage in all groups of oxygenic photosynthetic organisms. The key component of the NPQ mechanism in green algae and some other groups of algae and mosses is the LhcSR protein of the light harvesting complex (LHC) protein superfamily. In vascular plants, LhcSR is replaced by PsbS, another member of the LHC superfamily and a subunit of photosystem II (PSII). PsbS also performs the photoprotective function in mosses. For a long time, PsbS had been believed to be nonfunctional in green algae, although the corresponding gene was discovered in the genome of these organisms. The first evidence of the PsbS accumulation in the model green alga Chlamydomonas reinhardtii in response to the increase in irradiance was obtained only six years ago. However, the observed increase in the PsbS content was short-termed (on an hour-timescale). Here, we report a significant (more than three orders of magnitude) and prolonged (four days) upregulation of PsbS expression in response to the chilling-induced high-light stress followed by a less significant (~ tenfold) increase in the PsbS expression for nine days. This is the first evidence for the long-term upregulation of the PsbS expression in green alga (Chlorophyta) in response to stress. Our data indicate that the role of PsbS in the PSA of Chlorophyta is not limited to the first-line defense against stress, as it was previously assumed, but includes full-scale participation in the photoprotection of PSA from the environmental stress factors.


Subject(s)
Chlamydomonas reinhardtii , Microalgae , Light , Microalgae/metabolism , Photosynthesis , Photosystem II Protein Complex/genetics , Photosystem II Protein Complex/metabolism , Chlorophyll/metabolism , Chloroplasts/metabolism , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism , Plants/metabolism , Light-Harvesting Protein Complexes/genetics , Light-Harvesting Protein Complexes/metabolism
8.
Foods ; 12(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36613265

ABSTRACT

Kombucha tea was made by the fermentation of SCOBY culture of green tea broth with the addition of Fucus vesiculosus algae extract, Cetraria islandica lichen extract and their mixture. Kombucha was also made without the herbal supplements as a control. After 11 days of fermentation, in addition to the yeast Brettanomyces bruxellensis and the bacteria Komagataeibacter rhaeticus and Komagataeibacter hansenii contained in all of the samples, the yeast Zygosaccharomyces bailii and bacteria Komagataeibacter cocois were detected in the samples with the herbal extracts. In all of the kombucha with herbal additives, the total fraction of yeast was decreased as compared to the control. The total content of polyphenols and the antioxidant activity of the beverages with and without the addition of herbal extracts were comparable. The kombucha made with the algae extract showed an increased content of sucrose and organic acids, while the fructose and glucose content in the samples with algae and the mixture of extracts were lower than in the other samples. The samples with the algae extract had the highest organoleptic indicators "aroma", "clarity" and "acidity", while the control samples had slightly higher indicators of "taste" and "aftertaste". The results of this study indicate the potential of algae and lichens as functional supplements for obtaining non-alcoholic fermented beverages with additional nutraceutical value.

9.
Biochemistry (Mosc) ; 86(12): 1590-1598, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34937538

ABSTRACT

Photosynthetic organisms have developed a set of mechanisms aimed at preventing photo-oxidative reactions in the photosynthetic apparatus (PSA) initiated by excessively absorbed light energy. Along with high irradiance, other stressors, e.g., chilling temperatures, can lead to the absorption of the excess of light energy and hence to photo-oxidative stress. Here, we studied induction of photoprotective mechanisms in response to chilling (0°C) at a low irradiance (50 µmol PAR photons m-2·s-1) in the cells of microalga Lobosphaera incisa IPPAS C-2047. After 4 days of incubation at a low temperature, L. incisa IPPAS C-2047 cells showed a notable decrease in the photochemical activity of photosystem II (PSII) and in the efficiency of photosynthetic electron transport, as well as a significant increase in the thermal dissipation of the absorbed light energy in the light-harvesting antenna. In contrast, most conventional markers of PSA acclimation to excess light energy [total chlorophyll and carotenoid content; violaxanthin cycle pigment content and de-epoxidation state; photosynthetic antenna, PSII, and photosystem I (PSI) ratio] remained virtually unchanged. The content of major unsaturated fatty acids also remained almost unaffected, except for arachidonic acid (increased by 40%) recently assumed to activate violaxanthin de-epoxidase by adjusting its lipid microenvironment. Significant changes (4-7-fold increase) were observed in the expression of the gene encoding protective protein LhcSR. Pre-conditioning at 5°C prior to the acclimation to 0°C augmented the PSA photochemical activity. Our data show that the mid-term (4-d) acclimation of L. incisa IPPAS C-2047 to a chilling temperature at a low irradiance triggers the PSA response resembling, in part, the response to high light but relying mostly on the LhcSR protein-dependent quenching of excitation in the photosynthetic antenna.


Subject(s)
Chlorophyta/enzymology , Cold Temperature , Microalgae/metabolism , Photosynthesis , Photosystem II Protein Complex/metabolism , Chlorophyta/chemistry , Microalgae/chemistry , Photosystem II Protein Complex/chemistry
10.
Biology (Basel) ; 10(12)2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34943267

ABSTRACT

The Greater Caucasus is a part of seismically active Alpine-Himalayan orogenic belt and has been a center of significant volcanic activity during the Quaternary period. That led to the formation of the number of hydrothermal habitats, including subterranean thermal aquifers and surface hot springs. However, there are only a limited number of scientific works reporting on the microbial communities of these habitats. Moreover, all these reports concern only studies of specific microbial taxa, carried out using classical cultivation approaches. In this work, we present first culture-independent study of hydrotherms in the Republic of North Ossetia-Alania, located in the southern part of the North Caucasus. Using 16S metabarcoding, we analyzed the composition of the microbial communities of two subterranean thermal aquifers and terrestrial hot springs of the Karmadon valley. Analysis of correlations between the chemical composition of water and the representation of key taxa allowed us to identify the key factors determining the formation of microbial communities. In addition, we were able to identify a significant number of highly abundant deep phylogenetic lineages. Our study represents a first glance on the thermophilic microbial communities of the North Caucasus and may serve as a basis for further microbiological studies of the extreme habitats of this region.

11.
Cells ; 9(9)2020 08 21.
Article in English | MEDLINE | ID: mdl-32825634

ABSTRACT

To cope with fluctuating phosphorus (P) availability, cyanobacteria developed diverse acclimations, including luxury P uptake (LPU)-taking up P in excess of the current metabolic demand. LPU is underexplored, despite its importance for nutrient-driven rearrangements in aquatic ecosystems. We studied the LPU after the refeeding of P-deprived cyanobacterium Nostoc sp. PCC 7118 with inorganic phosphate (Pi), including the kinetics of Pi uptake, turnover of polyphosphate, cell ultrastructure, and gene expression. The P-deprived cells deployed acclimations to P shortage (reduction of photosynthetic apparatus and mobilization of cell P reserves). The P-starved cells capable of LPU exhibited a biphasic kinetic of the Pi uptake and polyphosphate formation. The first (fast) phase (1-2 h after Pi refeeding) occurred independently of light and temperature. It was accompanied by a transient accumulation of polyphosphate, still upregulated genes encoding high-affinity Pi transporters, and an ATP-dependent polyphosphate kinase. During the second (slow) phase, recovery from P starvation was accompanied by the downregulation of these genes. Our study revealed no specific acclimation to ample P conditions in Nostoc sp. PCC 7118. We conclude that the observed LPU phenomenon does not likely result from the activation of a mechanism specific for ample P conditions. On the contrary, it stems from slow disengagement of the low-P responses after the abrupt transition from low-P to ample P conditions.


Subject(s)
Biological Transport/physiology , Cyanobacteria/metabolism , Cyanobacteria/ultrastructure , Phosphorus/metabolism , Gene Expression , Humans
13.
Metab Eng ; 54: 264-274, 2019 07.
Article in English | MEDLINE | ID: mdl-31071446

ABSTRACT

Mitochondrial citrate carrier plays a central role in exporting acetyl-CoA in the form of citrate from mitochondria to cytosol thereby connecting carbohydrate catabolism and lipogenesis. In this study, Yarrowia lipolytica mitochondrial citrate carrier was functionally defined and characterized. Firstly, deletion of Y. lipolytica YlCTP1 and YlYHM2 genes coding putative tricarboxylate mitochondrial carriers were performed. ΔYlctp1 strain did not differ significantly from wild type strain in terms of growth rate, organic acids and lipid production. In contrast, ΔYlyhm2 strain did not grow in liquid citrate-containing minimal medium. Moreover, in glucose-containing lipogenic medium YlYHM2 null mutant strain did not produce citric acid; the production of isocitric acid and lipids were decreased. Reintroduction of YlYHM2 gene as well as heterologous expression of Aspergillus niger gene AnYHM2 into ΔYlyhm2 strain restored the growth in minimal citrate medium and even enhanced citric acid production by 45% in both variants compared with wild type strain during test tube cultivation. Mitochondrial extracts isolated from YlYHM2 null mutant and wild type strain were incorporated into liposomes; citrate/citrate and α-ketoglutarate/α-ketoglutarate homoexchange activities were reduced by 87% and 40% in ΔYlyhm2 strain, respectively, compared with the wild type, whereas citratein/α-ketoglutarateout and α-ketoglutaratein/citrateout heteroexchanges were decreased by 87% and 95%, respectively. YlYhm2p was expressed in Escherichia coli, purified and reconstituted into liposomes. Besides high efficiency to citrate and α-ketoglutarate transport, YlYhm2p also transported oxaloacetate, succinate, fumarate, and to a much lesser extent, aconitate, malate, isocitrate, oxoadipate, and glutamate. The activity of reconstituted YlYhm2p was inhibited strongly by SH-blocking reagents, pyridoxal-5'-phosphate, and partly by N-ethylmaleimide. Co-expression of YlYHM2 and adenosine monophosphate deaminase YlAMPD genes resulted in the production of 49.7 g/L of citric acid during test tube cultivation, whereas wild type strain accumulated 30.1 g/L of citric acid. Large-scale cultivation in bioreactor of the engineered strain resulted in 97.1 g/L of citric acid production with a process selectivity of 94.2% and an overall citric acid yield of 0.5 g/g. The maximal specific rate of citric acid synthesis was 0.93 g/L/h. Therefore, the physiological role of YlYhm2p in glucose-containing medium is to catalyze both import of citrate into mitochondria for catabolic reactions and export of citrate as a source of acetyl-CoA from mitochondria. Possible shuttles for citrate exporting are discussed. Moreover, for the first time evidence has been given for the improvement of TCA cycle intermediate production by manipulation of a gene coding a mitochondrial carrier.


Subject(s)
Carrier Proteins , Fungal Proteins , Mitochondria , Mitochondrial Proteins , Yarrowia , Aspergillus niger/genetics , Aspergillus niger/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Citric Acid Cycle/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Yarrowia/genetics , Yarrowia/metabolism
14.
Nucleic Acids Res ; 37(5): 1521-8, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19139073

ABSTRACT

The mitochondrial genome of Chlamydomonas reinhardtii only encodes three expressed tRNA genes, thus most mitochondrial tRNAs are likely imported. The sharing of tRNAs between chloroplasts and mitochondria has been speculated in this organism. We first demonstrate that no plastidial tRNA is present in mitochondria and that the mitochondrial translation mainly relies on the import of nucleus-encoded tRNA species. Then, using northern analysis, we show that the extent of mitochondrial localization for the 49 tRNA isoacceptor families encoded by the C. reinhardtii nuclear genome is highly variable. Until now the reasons for such variability were unknown. By comparing cytosolic and mitochondrial codon usage with the sub-cellular distribution of tRNAs, we provide unprecedented evidence that the steady-state level of a mitochondrial tRNA is linked not only to the frequency of the cognate codon in mitochondria but also to its frequency in the cytosol, then allowing optimal mitochondrial translation.


Subject(s)
Chlamydomonas reinhardtii/genetics , Codon , Mitochondria/genetics , RNA, Transfer/metabolism , Animals , Chlamydomonas reinhardtii/metabolism , Cytosol/metabolism , Genome, Mitochondrial , Mitochondria/metabolism , Plastids/genetics , RNA/genetics , RNA/metabolism , RNA Transport , RNA, Mitochondrial , RNA, Transfer/genetics
15.
Genetics ; 179(1): 113-23, 2008 May.
Article in English | MEDLINE | ID: mdl-18493044

ABSTRACT

In Chlamydomonas reinhardtii, 259 tRNA genes were identified and classified into 49 tRNA isoaccepting families. By constructing phylogenetic trees, we determined the evolutionary history for each tRNA gene family. The majority of the tRNA sequences are more closely related to their plant counterparts than to animals ones. Northern experiments also permitted us to show that at least one member of each tRNA isoacceptor family is transcribed and correctly processed in vivo. A short stretch of T residues known to be a signal for termination of polymerase III transcription was found downstream of most tRNA genes. It allowed us to propose that the vast majority of the tRNA genes are expressed and to confirm that numerous tRNA genes separated by short spacers are indeed cotranscribed. Interestingly, in silico analyses and hybridization experiments show that the cellular tRNA abundance is correlated with the number of tRNA genes and is adjusted to the codon usage to optimize translation efficiency. Finally, we studied the origin of SINEs, short interspersed elements related to tRNAs, whose presence in Chlamydomonas is exceptional. Phylogenetic analysis strongly suggests that tRNA(Asp)-related SINEs originate from a prokaryotic-type tRNA either horizontally transferred from a bacterium or originally present in mitochondria or chloroplasts.


Subject(s)
Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism , Evolution, Molecular , Multigene Family/genetics , Phylogeny , RNA, Transfer/genetics , Animals , Base Pairing , Base Sequence , Blotting, Northern , Codon/genetics , Computational Biology , Likelihood Functions , Models, Genetic , Reverse Transcriptase Polymerase Chain Reaction , Short Interspersed Nucleotide Elements/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...