Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Cells ; 10(11)2021 11 10.
Article in English | MEDLINE | ID: mdl-34831329

ABSTRACT

Spontaneous AP (action potential) firing of sinoatrial nodal cells (SANC) is critically dependent on protein kinase A (PKA) and Ca2+/calmodulin-dependent protein kinase II (CaMKII)-dependent protein phosphorylation, which are required for the generation of spontaneous, diastolic local Ca2+ releases (LCRs). Although phosphoprotein phosphatases (PP) regulate protein phosphorylation, the expression level of PPs and phosphatase inhibitors in SANC and the impact of phosphatase inhibition on the spontaneous LCRs and other players of the oscillatory coupled-clock system is unknown. Here, we show that rabbit SANC express both PP1, PP2A, and endogenous PP inhibitors I-1 (PPI-1), dopamine and cyclic adenosine 3',5'-monophosphate (cAMP)-regulated phosphoprotein (DARPP-32), kinase C-enhanced PP1 inhibitor (KEPI). Application of Calyculin A, (CyA), a PPs inhibitor, to intact, freshly isolated single SANC: (1) significantly increased phospholamban (PLB) phosphorylation (by 2-3-fold) at both CaMKII-dependent Thr17 and PKA-dependent Ser16 sites, in a time and concentration dependent manner; (2) increased ryanodine receptor (RyR) phosphorylation at the Ser2809 site; (3) substantially increased sarcoplasmic reticulum (SR) Ca2+ load; (4) augmented L-type Ca2+ current amplitude; (5) augmented LCR's characteristics and decreased LCR period in intact and permeabilized SANC, and (6) increased the spontaneous basal AP firing rate. In contrast, the selective PP2A inhibitor okadaic acid (100 nmol/L) had no significant effect on spontaneous AP firing, LCR parameters, or PLB phosphorylation. Application of purified PP1 to permeabilized SANC suppressed LCR, whereas purified PP2A had no effect on LCR characteristics. Our numerical model simulations demonstrated that PP inhibition increases AP firing rate via a coupled-clock mechanism, including respective increases in the SR Ca2+ pumping rate, L-type Ca2+ current, and Na+/Ca2+-exchanger current. Thus, PP1 and its endogenous inhibitors modulate the basal spontaneous firing rate of cardiac pacemaker cells by suppressing SR Ca2+ cycling protein phosphorylation, the SR Ca2+ load and LCRs, and L-type Ca2+ current.


Subject(s)
Biological Clocks , Phosphoprotein Phosphatases/metabolism , Sinoatrial Node/cytology , Action Potentials/drug effects , Animals , Biological Clocks/drug effects , Calcium/metabolism , Calcium Channels, L-Type/metabolism , Calcium-Binding Proteins/metabolism , Cell Membrane Permeability/drug effects , Computer Simulation , Cyclic AMP-Dependent Protein Kinases/metabolism , Heart Ventricles/cytology , Marine Toxins/pharmacology , Models, Biological , Oxazoles/pharmacology , Phosphorylation/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rabbits
2.
Front Physiol ; 12: 612770, 2021.
Article in English | MEDLINE | ID: mdl-34566668

ABSTRACT

Ca2+ and V m transitions occurring throughout action potential (AP) cycles in sinoatrial nodal (SAN) cells are cues that (1) not only regulate activation states of molecules operating within criticality (Ca2+ domain) and limit-cycle (V m domain) mechanisms of a coupled-clock system that underlies SAN cell automaticity, (2) but are also regulated by the activation states of the clock molecules they regulate. In other terms, these cues are both causes and effects of clock molecular activation (recursion). Recently, we demonstrated that Ca2+ and V m transitions during AP cycles in single SAN cells isolated from mice, guinea pigs, rabbits, and humans are self-similar (obey a power law) and are also self-similar to trans-species AP firing intervals (APFIs) of these cells in vitro, to heart rate in vivo, and to body mass. Neurotransmitter stimulation of ß-adrenergic receptor or cholinergic receptor-initiated signaling in SAN cells modulates their AP firing rate and rhythm by impacting on the degree to which SAN clocks couple to each other, creating the broad physiologic range of SAN cell mean APFIs and firing interval variabilities. Here we show that Ca2+ and V m domain kinetic transitions (time to AP ignition in diastole and 90% AP recovery) occurring within given AP, the mean APFIs, and APFI variabilities within the time series of APs in 230 individual SAN cells are self-similar (obey power laws). In other terms, these long-range correlations inform on self-similar distributions of order among SAN cells across the entire broad physiologic range of SAN APFIs, regardless of whether autonomic receptors of these cells are stimulated or not and regardless of the type (adrenergic or cholinergic) of autonomic receptor stimulation. These long-range correlations among distributions of Ca2+ and V m kinetic functions that regulate SAN cell clock coupling during each AP cycle in different individual, isolated SAN cells not in contact with each other. Our numerical model simulations further extended our perspectives to the molecular scale and demonstrated that many ion currents also behave self-similar across autonomic states. Thus, to ensure rapid flexibility of AP firing rates in response to different types and degrees of autonomic input, nature "did not reinvent molecular wheels within the coupled-clock system of pacemaker cells," but differentially engaged or scaled the kinetics of gears that regulate the rate and rhythm at which the "wheels spin" in a given autonomic input context.

3.
Int J Mol Sci ; 22(16)2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34445119

ABSTRACT

The sinoatrial (SA) node is the physiological pacemaker of the heart, and resting heart rate in humans is a well-known risk factor for cardiovascular disease and mortality. Consequently, the mechanisms of initiating and regulating the normal spontaneous SA node beating rate are of vital importance. Spontaneous firing of the SA node is generated within sinoatrial nodal cells (SANC), which is regulated by the coupled-clock pacemaker system. Normal spontaneous beating of SANC is driven by a high level of cAMP-mediated PKA-dependent protein phosphorylation, which rely on the balance between high basal cAMP production by adenylyl cyclases and high basal cAMP degradation by cyclic nucleotide phosphodiesterases (PDEs). This diverse class of enzymes includes 11 families and PDE3 and PDE4 families dominate in both the SA node and cardiac myocardium, degrading cAMP and, consequently, regulating basal cardiac pacemaker function and excitation-contraction coupling. In this review, we will demonstrate similarities between expression, distribution, and colocalization of various PDE subtypes in SANC and cardiac myocytes of different species, including humans, focusing on PDE3 and PDE4. Here, we will describe specific targets of the coupled-clock pacemaker system modulated by dual PDE3 + PDE4 activation and provide evidence that concurrent activation of PDE3 + PDE4, operating in a synergistic manner, regulates the basal cardiac pacemaker function and provides control over normal spontaneous beating of SANCs through (PDE3 + PDE4)-dependent modulation of local subsarcolemmal Ca2+ releases (LCRs).


Subject(s)
Biological Clocks/physiology , Myocytes, Cardiac/metabolism , Phosphoric Diester Hydrolases/metabolism , Sinoatrial Node/metabolism , Animals , Calcium/metabolism , Calcium Signaling/physiology , Cyclic AMP/metabolism , Humans
4.
Front Physiol ; 9: 1301, 2018.
Article in English | MEDLINE | ID: mdl-30356755

ABSTRACT

Spontaneous firing of sinoatrial (SA) node cells (SANCs) is regulated by cyclic adenosine monophosphate (cAMP)-mediated, protein kinase A (PKA)-dependent (cAMP/PKA) local subsarcolemmal Ca2+ releases (LCRs) from ryanodine receptors (RyR). The LCRs occur during diastolic depolarization (DD) and activate an inward Na+/Ca2+ exchange current that accelerates the DD rate prompting the next action potential (AP). Basal phosphodiesterases (PDEs) activation degrades cAMP, reduces basal cAMP/PKA-dependent phosphorylation, and suppresses normal spontaneous firing of SANCs. The cAMP-degrading PDE1, PDE3, and PDE4 represent major PDE activities in rabbit SANC, and PDE inhibition by 3-isobutyl-1-methylxanthine (IBMX) increases spontaneous firing of SANC by ∼50%. Though inhibition of single PDE1-PDE4 only moderately increases spontaneous SANC firing, dual PDE3 + PDE4 inhibition produces a synergistic effect hastening the spontaneous SANC beating rate by ∼50%. Here, we describe the expression and distribution of different PDE subtypes within rabbit SANCs, several specific targets (L-type Ca2+ channels and phospholamban) regulated by basal concurrent PDE3 + PDE4 activation, and critical importance of RyR Ca2+ releases for PDE-dependent regulation of spontaneous SANC firing. Colocalization of PDE3 and PDE4 beneath sarcolemma or in striated patterns inside SANCs strongly suggests that PDE-dependent regulation of cAMP/PKA signaling might be executed at the local level; this idea, however, requires further verification.

5.
Int J Mol Sci ; 19(8)2018 Jul 25.
Article in English | MEDLINE | ID: mdl-30044420

ABSTRACT

Spontaneous beating of the heart pacemaker, the sinoatrial node, is generated by sinoatrial node cells (SANC) and caused by gradual change of the membrane potential called diastolic depolarization (DD). Submembrane local Ca2+ releases (LCR) from sarcoplasmic reticulum (SR) occur during late DD and activate an inward Na⁺/Ca2+ exchange current, which accelerates the DD rate leading to earlier occurrence of an action potential. A comparison of intrinsic SR Ca2+ cycling revealed that, at similar physiological Ca2+ concentrations, LCRs are large and rhythmic in permeabilized SANC, but small and random in permeabilized ventricular myocytes (VM). Permeabilized SANC spontaneously released more Ca2+ from SR than VM, despite comparable SR Ca2+ content in both cell types. In this review we discuss specific patterns of expression and distribution of SR Ca2+ cycling proteins (SR Ca2+ ATPase (SERCA2), phospholamban (PLB) and ryanodine receptors (RyR)) in SANC and ventricular myocytes. We link ability of SANC to generate larger and rhythmic LCRs with increased abundance of SERCA2, reduced abundance of the SERCA inhibitor PLB. In addition, an increase in intracellular [Ca2+] increases phosphorylation of both PLB and RyR exclusively in SANC. The differences in SR Ca2+ cycling protein expression between SANC and VM provide insights into diverse regulation of intrinsic SR Ca2+ cycling that drives automaticity of SANC.


Subject(s)
Calcium-Binding Proteins/metabolism , Calcium/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Sinoatrial Node/physiology , Animals , Membrane Potentials/physiology , Myocytes, Cardiac/metabolism , Phosphorylation , Rabbits , Sarcoplasmic Reticulum/physiology , Sinoatrial Node/cytology , Sodium/metabolism
6.
Circ Arrhythm Electrophysiol ; 11(6): e005896, 2018 06.
Article in English | MEDLINE | ID: mdl-29880528

ABSTRACT

BACKGROUND: Spontaneous firing of sinoatrial node cells (SANCs) is regulated by cAMP-mediated, PKA (protein kinase A)-dependent (cAMP/PKA) local subsarcolemmal Ca2+ releases (LCRs) from RyRs (ryanodine receptors). LCRs occur during diastolic depolarization and activate an inward Na+/Ca2+ exchange current that accelerates diastolic depolarization rate prompting the next action potential. PDEs (phosphodiesterases) regulate cAMP-mediated signaling; PDE3/PDE4 represent major PDE activities in SANC, but how they modulate LCRs and basal spontaneous SANC firing remains unknown. METHODS: Real-time polymerase chain reaction, Western blot, immunostaining, cellular perforated patch clamping, and confocal microscopy were used to elucidate mechanisms of PDE-dependent regulation of cardiac pacemaking. RESULTS: PDE3A, PDE4B, and PDE4D were the major PDE subtypes expressed in rabbit SANC, and PDE3A was colocalized with α-actinin, PDE4D, SERCA (sarcoplasmic reticulum Ca2+ ATP-ase), and PLB (phospholamban) in Z-lines. Inhibition of PDE3 (cilostamide) or PDE4 (rolipram) alone increased spontaneous SANC firing by ≈20% (P<0.05) and ≈5% (P>0.05), respectively, but concurrent PDE3+PDE4 inhibition increased spontaneous firing by ≈45% (P<0.01), indicating synergistic effect. Inhibition of PDE3 or PDE4 alone increased L-type Ca2+ current (ICa,L) by ≈60% (P<0.01) or ≈5% (P>0.05), respectively, and PLB phosphorylation by ≈20% (P>0.05) each, but dual PDE3+PDE4 inhibition increased ICa,L by ≈100% (P<0.01) and PLB phosphorylation by ≈110% (P<0.05). Dual PDE3+PDE4 inhibition increased the LCR number and size (P<0.01) and reduced the SR (sarcoplasmic reticulum) Ca2+ refilling time (P<0.01) and the LCR period (time from action potential-induced Ca2+ transient to subsequent LCR; P<0.01), leading to decrease in spontaneous SANC cycle length (P<0.01). When RyRs were disabled by ryanodine and LCRs ceased, dual PDE3+PDE4 inhibition failed to increase spontaneous SANC firing. CONCLUSIONS: Basal cardiac pacemaker function is regulated by concurrent PDE3+PDE4 activation which operates in a synergistic manner via decrease in cAMP/PKA phosphorylation, suppression of LCR parameters, and prolongation of the LCR period and spontaneous SANC cycle length.


Subject(s)
Action Potentials , Biological Clocks , Cyclic Nucleotide Phosphodiesterases, Type 3/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Heart Rate , Sinoatrial Node/enzymology , Action Potentials/drug effects , Animals , Calcium Signaling , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 3/genetics , Cyclic Nucleotide Phosphodiesterases, Type 4/genetics , Enzyme Activation , Heart Rate/drug effects , Kinetics , Phosphodiesterase 3 Inhibitors/pharmacology , Phosphodiesterase 4 Inhibitors/pharmacology , Rabbits , Ryanodine Receptor Calcium Release Channel/metabolism , Sinoatrial Node/cytology , Sinoatrial Node/drug effects
7.
Am J Physiol Heart Circ Physiol ; 311(3): H532-44, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27402669

ABSTRACT

Spontaneous beating of the heart pacemaker, the sinoatrial node, is generated by sinoatrial node cells (SANC) due to gradual change of the membrane potential called diastolic depolarization (DD). Spontaneous, submembrane local Ca(2+) releases (LCR) from ryanodine receptors (RyR) occur during late DD and activate an inward Na(+)/Ca(2+)exchange current to boost the DD rate and fire an action potential (AP). Here we studied the extent of basal Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) activation and the role of basal CaMKII-dependent protein phosphorylation in generation of LCRs and regulation of normal automaticity of intact rabbit SANC. The basal level of activated (autophosphorylated) CaMKII in rabbit SANC surpassed that in ventricular myocytes (VM) by approximately twofold, and this was accompanied by high basal level of protein phosphorylation. Specifically, phosphorylation of phospholamban (PLB) at the CaMKII-dependent Thr(17) site was approximately threefold greater in SANC compared with VM, and RyR phosphorylation at CaMKII-dependent Ser(2815) site was ∼10-fold greater in the SA node, compared with that in ventricle. CaMKII inhibition reduced phosphorylation of PLB and RyR, decreased LCR size, increased LCR periods (time from AP-induced Ca(2+) transient to subsequent LCR), and suppressed spontaneous SANC firing. Graded changes in CaMKII-dependent phosphorylation (indexed by PLB phosphorylation at the Thr(17)site) produced by CaMKII inhibition, ß-AR stimulation or phosphodiesterase inhibition were highly correlated with changes in SR Ca(2+) replenishment times and LCR periods and concomitant changes in spontaneous SANC cycle lengths (R(2) = 0.96). Thus high basal CaMKII activation modifies the phosphorylation state of Ca(2+) cycling proteins PLB, RyR, L-type Ca(2+) channels (and likely others), adjusting LCR period and characteristics, and ultimately regulates both normal and reserve cardiac pacemaker function.


Subject(s)
Action Potentials/physiology , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Calcium/metabolism , Myocytes, Cardiac/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Sinoatrial Node/metabolism , Action Potentials/drug effects , Adrenergic beta-Agonists/pharmacology , Animals , Blotting, Western , Calcium-Binding Proteins/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/antagonists & inhibitors , Calcium-Calmodulin-Dependent Protein Kinase Type 2/drug effects , Cells, Cultured , Diastole , Heart Ventricles/cytology , Heart Ventricles/drug effects , Isolated Heart Preparation , Microscopy, Confocal , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/physiology , Phosphodiesterase Inhibitors/pharmacology , Phosphorylation , Rabbits , Ryanodine Receptor Calcium Release Channel/drug effects , Sinoatrial Node/drug effects , Sinoatrial Node/physiology , Sodium-Calcium Exchanger/metabolism
8.
J Mol Cell Cardiol ; 66: 106-15, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24274954

ABSTRACT

Basal phosphorylation of sarcoplasmic reticulum (SR) Ca(2+) proteins is high in sinoatrial nodal cells (SANC), which generate partially synchronized, spontaneous, rhythmic, diastolic local Ca(2+) releases (LCRs), but low in ventricular myocytes (VM), which exhibit rare diastolic, stochastic SR-generated Ca(2+) sparks. We tested the hypothesis that in a physiologic Ca(2+) milieu, and independent of increased Ca(2+) influx, an increase in basal phosphorylation of SR Ca(2+) cycling proteins will convert stochastic Ca(2+) sparks into periodic, high-power Ca(2+) signals of the type that drives SANC normal automaticity. We measured phosphorylation of SR-associated proteins, phospholamban (PLB) and ryanodine receptors (RyR), and spontaneous local Ca(2+) release characteristics (LCR) in permeabilized single, rabbit VM in physiologic [Ca(2+)], prior to and during inhibition of protein phosphatase (PP) and phosphodiesterase (PDE), or addition of exogenous cAMP, or in the presence of an antibody (2D12), that specifically inhibits binding of the PLB to SERCA-2. In the absence of the aforementioned perturbations, VM could only generate stochastic local Ca(2+) releases of low power and low amplitude, as assessed by confocal Ca(2+) imaging and spectral analysis. When the kinetics of Ca(2+) pumping into the SR were increased by an increase in PLB phosphorylation (via PDE and PP inhibition or addition of cAMP) or by 2D12, self-organized, "clock-like" local Ca(2+) releases, partially synchronized in space and time (Ca(2+) wavelets), emerged, and the ensemble of these rhythmic local Ca(2+) wavelets generated a periodic high-amplitude Ca(2+) signal. Thus, a Ca(2+) clock is not specific to pacemaker cells, but can also be unleashed in VM when SR Ca(2+) cycling increases and spontaneous local Ca(2+) release becomes partially synchronized. This unleashed Ca(2+) clock that emerges in a physiological Ca(2+) milieu in VM has two faces, however: it can provoke ventricular arrhythmias; or if harnessed, can be an important feature of novel bio-pacemaker designs.


Subject(s)
Biological Clocks/genetics , Calcium-Binding Proteins/metabolism , Calcium/metabolism , Myocytes, Cardiac/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum/metabolism , Animals , Antibodies/pharmacology , Calcium-Binding Proteins/genetics , Cyclic AMP/metabolism , Gene Expression Regulation , Heart Ventricles/cytology , Heart Ventricles/metabolism , Myocytes, Cardiac/cytology , Pacemaker, Artificial , Phosphoprotein Phosphatases/genetics , Phosphoprotein Phosphatases/metabolism , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/metabolism , Phosphorylation , Protein Binding , Rabbits , Ryanodine Receptor Calcium Release Channel/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/antagonists & inhibitors , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Signal Transduction , Sinoatrial Node/cytology , Sinoatrial Node/metabolism
9.
Sci Signal ; 6(260): ra6, 2013 Jan 29.
Article in English | MEDLINE | ID: mdl-23362239

ABSTRACT

The spontaneous beating of the heart is governed by spontaneous firing of sinoatrial node cells, which generate action potentials due to spontaneous depolarization of the membrane potential, or diastolic depolarization. The spontaneous diastolic depolarization rate is determined by spontaneous local submembrane Ca²âº releases through ryanodine receptors (RyRs). We sought to identify specific mechanisms of intrinsic Ca²âº cycling by which sinoatrial node cells, but not ventricular myocytes, generate robust, rhythmic local Ca²âº releases. At similar physiological intracellular Ca²âº concentrations, local Ca²âº releases were large and rhythmic in permeabilized sinoatrial node cells but small and random in permeabilized ventricular myocytes. Furthermore, sinoatrial node cells spontaneously released more Ca²âº from the sarcoplasmic reticulum than did ventricular myocytes, despite comparable sarcoplasmic reticulum Ca²âº content in both cell types. This ability of sinoatrial node cells to generate larger and rhythmic local Ca²âº releases was associated with increased abundance of sarcoplasmic reticulum Ca²âº-ATPase (SERCA), reduced abundance of the SERCA inhibitor phospholamban, and increased Ca²âº-dependent phosphorylation of phospholamban and RyR. The increased phosphorylation of RyR in sinoatrial node cells may facilitate Ca²âº release from the sarcoplasmic reticulum, whereas Ca²âº-dependent increase in phosphorylation of phospholamban relieves its inhibition of SERCA, augmenting the pumping rate of Ca²âº required to support robust, rhythmic local Ca²âº releases. The differences in Ca²âº cycling between sinoatrial node cells and ventricular myocytes provide insights into the regulation of intracellular Ca²âº cycling that drives the automaticity of sinoatrial node cells.


Subject(s)
Biological Clocks/physiology , Calcium/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Sinoatrial Node/metabolism , Animals , Biological Clocks/drug effects , Calcium-Binding Proteins/pharmacology , Heart Ventricles/cytology , Heart Ventricles/metabolism , Myocardium/cytology , Myocardium/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Phosphorylation/drug effects , Phosphorylation/physiology , Rabbits , Sarcoplasmic Reticulum Calcium-Transporting ATPases/antagonists & inhibitors , Sinoatrial Node/cytology
10.
J Mol Cell Cardiol ; 51(5): 730-9, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21840316

ABSTRACT

Recent perspectives on sinoatrial nodal cell (SANC)(*) function indicate that spontaneous sarcoplasmic reticulum (SR) Ca(2+) cycling, i.e. an intracellular "Ca(2+) clock," driven by cAMP-mediated, PKA-dependent phosphorylation, interacts with an ensemble of surface membrane electrogenic molecules ("surface membrane clock") to drive SANC normal automaticity. The role of AC-cAMP-PKA-Ca(2+) signaling cascade in mouse, the species most often utilized for genetic manipulations, however, has not been systematically tested. Here we show that Ca(2+) cycling proteins (e.g. RyR2, NCX1, and SERCA2) are abundantly expressed in mouse SAN and that spontaneous, rhythmic SR generated local Ca(2+) releases (LCRs) occur in skinned mouse SANC, clamped at constant physiologic [Ca(2+)]. Mouse SANC also exhibits a high basal level of phospholamban (PLB) phosphorylation at the PKA-dependent site, Serine16. Inhibition of intrinsic PKA activity or inhibition of PDE in SANC, respectively: reduces or increases PLB phosphorylation, and markedly prolongs or reduces the LCR period; and markedly reduces or accelerates SAN spontaneous firing rate. Additionally, the increase in AP firing rate by PKA-dependent phosphorylation by ß-adrenergic receptor (ß-AR) stimulation requires normal intracellular Ca(2+) cycling, because the ß-AR chronotropic effect is markedly blunted when SR Ca(2+) cycling is disrupted. Thus, AC-cAMP-PKA-Ca(2+) signaling cascade is a major mechanism of normal automaticity in mouse SANC.


Subject(s)
Calcium Signaling/physiology , Calcium-Binding Proteins/metabolism , Calcium/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Gene Expression Regulation/physiology , Heart Rate/physiology , Sinoatrial Node/metabolism , Action Potentials/drug effects , Action Potentials/physiology , Animals , Calcium Signaling/drug effects , Calcium-Binding Proteins/genetics , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , Cyclic AMP-Dependent Protein Kinases/genetics , Gene Expression Regulation/drug effects , Heart Rate/drug effects , Male , Mice , Mice, Inbred C57BL , Periodicity , Phosphorylation/drug effects , Phosphorylation/physiology , Receptors, Adrenergic, beta/genetics , Receptors, Adrenergic, beta/metabolism , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum/drug effects , Sarcoplasmic Reticulum/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Sinoatrial Node/cytology , Sinoatrial Node/drug effects , Sinoatrial Node/physiology , Sodium-Calcium Exchanger/genetics , Sodium-Calcium Exchanger/metabolism
12.
Circ Res ; 107(6): 767-75, 2010 Sep 17.
Article in English | MEDLINE | ID: mdl-20651285

ABSTRACT

RATIONALE: Sinoatrial node cells (SANCs) generate local, subsarcolemmal Ca(2+) releases (LCRs) from sarcoplasmic reticulum (SR) during late diastolic depolarization. LCRs activate an inward Na(+)-Ca(2+) exchange current (I(NCX)), which accelerates diastolic depolarization rate, prompting the next action potential (AP). The LCR period, ie, a delay between AP-induced Ca(2+) transient and LCR appearance, defines the time of late diastolic depolarization I(NCX) activation. Mechanisms that control the LCR period, however, are still unidentified. OBJECTIVE: To determine dependence of the LCR period on SR Ca(2+) refilling kinetics and establish links between regulation of SR Ca(2+) replenishment, LCR period, and spontaneous cycle length. METHODS AND RESULTS: Spontaneous APs and SR luminal or cytosolic Ca(2+) were recorded using perforated patch and confocal microscopy, respectively. Time to 90% replenishment of SR Ca(2+) following AP-induced Ca(2+) transient was highly correlated with the time to 90% decay of cytosolic Ca(2+) transient (T-90(C)). Local SR Ca(2+) depletions mirror their cytosolic counterparts, LCRs, and occur following SR Ca(2+) refilling. Inhibition of SR Ca(2+) pump by cyclopiazonic acid dose-dependently suppressed spontaneous SANCs firing up to ≈50%. Cyclopiazonic acid and graded changes in phospholamban phosphorylation produced by ß-adrenergic receptor stimulation, phosphodiesterase or protein kinase A inhibition shifted T-90(C) and proportionally shifted the LCR period and spontaneous cycle length (R(2)=0.98). CONCLUSIONS: The LCR period, a critical determinant of the spontaneous SANC cycle length, is defined by the rate of SR Ca(2+) replenishment, which is critically dependent on SR pumping rate, Ca(2+) available for pumping, supplied by L-type Ca(2+) channel, and ryanodine receptor Ca(2+) release flux, each of which is modulated by cAMP-mediated protein kinase A-dependent phosphorylation.


Subject(s)
Biological Clocks/physiology , Calcium Signaling/physiology , Heart Rate/physiology , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Sarcoplasmic Reticulum/enzymology , Sinoatrial Node/enzymology , Action Potentials/drug effects , Animals , Biological Clocks/drug effects , Calcium Signaling/drug effects , Heart Rate/drug effects , Rabbits , Sarcoplasmic Reticulum/metabolism , Sarcoplasmic Reticulum/physiology , Sarcoplasmic Reticulum Calcium-Transporting ATPases/antagonists & inhibitors , Sarcoplasmic Reticulum Calcium-Transporting ATPases/physiology , Sinoatrial Node/cytology , Sinoatrial Node/metabolism , Sinoatrial Node/physiology , Time Factors
13.
Circ Res ; 106(4): 659-73, 2010 Mar 05.
Article in English | MEDLINE | ID: mdl-20203315

ABSTRACT

Ion channels on the surface membrane of sinoatrial nodal pacemaker cells (SANCs) are the proximal cause of an action potential. Each individual channel type has been thoroughly characterized under voltage clamp, and the ensemble of the ion channel currents reconstructed in silico generates rhythmic action potentials. Thus, this ensemble can be envisioned as a surface "membrane clock" (M clock). Localized subsarcolemmal Ca(2+) releases are generated by the sarcoplasmic reticulum via ryanodine receptors during late diastolic depolarization and are referred to as an intracellular "Ca(2+) clock," because their spontaneous occurrence is periodic during voltage clamp or in detergent-permeabilized SANCs, and in silico as well. In spontaneously firing SANCs, the M and Ca(2+) clocks do not operate in isolation but work together via numerous interactions modulated by membrane voltage, subsarcolemmal Ca(2+), and protein kinase A and CaMKII-dependent protein phosphorylation. Through these interactions, the 2 subsystem clocks become mutually entrained to form a robust, stable, coupled-clock system that drives normal cardiac pacemaker cell automaticity. G protein-coupled receptors signaling creates pacemaker flexibility, ie, effects changes in the rhythmic action potential firing rate, by impacting on these very same factors that regulate robust basal coupled-clock system function. This review examines evidence that forms the basis of this coupled-clock system concept in cardiac SANCs.


Subject(s)
Biological Clocks , Calcium Channels/metabolism , Calcium Signaling , Circadian Rhythm , Heart Rate , Sinoatrial Node/metabolism , Action Potentials , Animals , Biological Clocks/genetics , Calcium Channels/genetics , Calcium Signaling/genetics , Circadian Rhythm/genetics , Excitation Contraction Coupling , Heart Rate/genetics , Humans , Kinetics , Myocardial Contraction , Phosphorylation , Receptors, G-Protein-Coupled/metabolism
14.
J Mol Cell Cardiol ; 47(4): 456-74, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19573534

ABSTRACT

Decades of intensive research of primary cardiac pacemaker, the sinoatrial node, have established potential roles of specific membrane channels in the generation of the diastolic depolarization, the major mechanism allowing sinoatrial node cells to generate spontaneous beating. During the last three decades, multiple studies made either in the isolated sinoatrial node or sinoatrial node cells have demonstrated a pivotal role of Ca(2+) and, specifically Ca(2+) release from sarcoplasmic reticulum, for spontaneous beating of cardiac pacemaker. Recently, spontaneous, rhythmic local subsarcolemmal Ca(2+) releases from ryanodine receptors during late half of the diastolic depolarization have been implicated as a vital factor in the generation of sinoatrial node cell spontaneous firing. Local Ca(2+) releases are driven by a unique combination of high basal cAMP production by adenylyl cyclases, high basal cAMP degradation by phosphodiesterases and a high level of cAMP-mediated PKA-dependent phosphorylation. These local Ca(2+) releases activate an inward Na(+)-Ca(2+) exchange current which accelerates the terminal diastolic depolarization rate and, thus, controls the spontaneous pacemaker firing. Both the basal primary pacemaker beating rate and its modulation via beta-adrenergic receptor stimulation appear to be critically dependent upon intact RyR function and local subsarcolemmal sarcoplasmic reticulum generated Ca(2+) releases. This review aspires to integrate the traditional viewpoint that has emphasized the supremacy of the ensemble of surface membrane ion channels in spontaneous firing of the primary cardiac pacemaker, and these novel perspectives of cAMP-mediated PKA-dependent Ca(2+) cycling in regulation of the heart pacemaker clock, both in the basal state and during beta-adrenergic receptor stimulation.


Subject(s)
Calcium Channels/metabolism , Calcium Signaling , Cell Membrane/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Sinoatrial Node/cytology , Sinoatrial Node/enzymology , Animals , Humans , Receptors, Adrenergic, beta/metabolism
15.
Am J Physiol Heart Circ Physiol ; 297(3): H949-59, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19542482

ABSTRACT

Prior studies indicate that cholinergic receptor (ChR) activation is linked to beating rate reduction (BRR) in sinoatrial nodal cells (SANC) via 1) a G(i)-coupled reduction in adenylyl cyclase (AC) activity, leading to a reduction of cAMP or protein kinase A (PKA) modulation of hyperpolarization-activated current (I(f)) or L-type Ca(2+) currents (I(Ca,L)), respectively; and 2) direct G(i)-coupled activation of ACh-activated potassium current (I(KACh)). More recent studies, however, have indicated that Ca(2+) cycling by the sarcoplasmic reticulum within SANC (referred to as a Ca(2+) clock) generates rhythmic, spontaneous local Ca(2+) releases (LCR) that are AC-PKA dependent. LCRs activate Na(+)-Ca(2+) exchange (NCX) current, which ignites the surface membrane ion channels to effect an AP. The purpose of the present study was to determine how ChR signaling initiated by a cholinergic agonist, carbachol (CCh), affects AC, cAMP, and PKA or sarcolemmal ion channels and LCRs and how these effects become integrated to generate the net response to a given intensity of ChR stimulation in single, isolated rabbit SANC. The threshold CCh concentration ([CCh]) for BRR was approximately 10 nM, half maximal inhibition (IC(50)) was achieved at 100 nM, and 1,000 nM stopped spontaneous beating. G(i) inhibition by pertussis toxin blocked all CCh effects on BRR. Using specific ion channel blockers, we established that I(f) blockade did not affect BRR at any [CCh] and that I(KACh) activation, evidenced by hyperpolarization, first became apparent at [CCh] > 30 nM. At IC(50), CCh reduced cAMP and reduced PKA-dependent phospholamban (PLB) phosphorylation by approximately 50%. The dose response of BRR to CCh in the presence of I(KACh) blockade by a specific inhibitor, tertiapin Q, mirrored that of CCh to reduced PLB phosphorylation. At IC(50), CCh caused a time-dependent reduction in the number and size of LCRs and a time dependent increase in LCR period that paralleled coincident BRR. The phosphatase inhibitor calyculin A reversed the effect of IC(50) CCh on SANC LCRs and BRR. Numerical model simulations demonstrated that Ca(2+) cycling is integrated into the cholinergic modulation of BRR via LCR-induced activation of NCX current, providing theoretical support for the experimental findings. Thus ChR stimulation-induced BRR is entirely dependent on G(i) activation and the extent of G(i) coupling to Ca(2+) cycling via PKA signaling or to I(KACh): at low [CCh], I(KACh) activation is not evident and BRR is attributable to a suppression of cAMP-mediated, PKA-dependent Ca(2+) signaling; as [CCh] increases beyond 30 nM, a tight coupling between suppression of PKA-dependent Ca(2+) signaling and I(KACh) activation underlies a more pronounced BRR.


Subject(s)
Calcium Channels, L-Type/physiology , Calcium Signaling/physiology , Cyclic AMP-Dependent Protein Kinases/metabolism , Receptors, Cholinergic/physiology , Sinoatrial Node/physiology , Action Potentials/drug effects , Action Potentials/physiology , Animals , Atropine/pharmacology , Bee Venoms/pharmacology , Calcium/metabolism , Calcium Signaling/drug effects , Calcium-Binding Proteins/metabolism , Cells, Cultured , Cesium/pharmacology , Chlorides/pharmacology , Cholinergic Agonists/pharmacology , Cyclic AMP/metabolism , Cyclic GMP/metabolism , Parasympatholytics/pharmacology , Patch-Clamp Techniques , Pertussis Toxin/pharmacology , Phosphorylation/drug effects , Phosphorylation/physiology , Potassium Channel Blockers/pharmacology , Rabbits , Sinoatrial Node/cytology , Stochastic Processes
16.
Ann N Y Acad Sci ; 1123: 41-57, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18375576

ABSTRACT

Earlier studies of the initiating event of normal automaticity of the heart's pacemaker cells, inspired by classical quantitative membrane theory, focused upon ion currents (IK, I f) that determine the maximum diastolic potential and the early phase of the spontaneous diastolic depolarization (DD). These early DD events are caused by the prior action potential (AP) and essentially reflect a membrane recovery process. Events following the recovery process that ignite APs have not been recognized and remained a mystery until recently. These critical events are linked to rhythmic intracellular signals initiated by Ca2+ clock (i.e., sarcoplasmic reticulum [SR] cycling Ca2+). Sinoatrial cells, regardless of size, exhibit intense ryanodine receptor (RyR), Na+/Ca2+ exchange (NCX)-1, and SR Ca2+ ATPase-2 immunolabeling and dense submembrane NCX/RyR colocalization; Ca2+ clocks generate spontaneous stochastic but roughly periodic local subsarcolemmal Ca2+ releases (LCR). LCRs generate inward currents via NCX that exponentially accelerate the late DD. The timing and amplitude of LCR/I NCX-coupled events control the timing and amplitude of the nonlinear terminal DD and therefore ultimately control the chronotropic state by determining the timing of the I CaL activation that initiates the next AP. LCR period is precisely controlled by the kinetics of SR Ca2+ cycling, which, in turn, are regulated by 1) the status of protein kinase A-dependent phosphorylation of SR Ca2+ cycling proteins; and 2) membrane ion channels ensuring the Ca2+ homeostasis and therefore the Ca2+ available to Ca2+ clock. Thus, the link between early DD and next AP, missed in earlier studies, is ensured by a precisely physiologically regulated Ca2+ clock within pacemaker cells that integrates multiple Ca2+-dependent functions and rhythmically ignites APs during late DD via LCRs-I NCX coupling.


Subject(s)
Biological Clocks/physiology , Heart Rate/physiology , Heart/physiology , Action Potentials/physiology , Animals , Calcium/physiology , Cyclic AMP-Dependent Protein Kinases/metabolism , Humans , Ion Channels/physiology , Ryanodine Receptor Calcium Release Channel/physiology , Sinoatrial Node/physiology , Sodium-Calcium Exchanger/physiology
17.
J Biol Chem ; 283(21): 14461-8, 2008 May 23.
Article in English | MEDLINE | ID: mdl-18356168

ABSTRACT

Spontaneous, rhythmic subsarcolemmal local Ca(2+) releases driven by cAMP-mediated, protein kinase A (PKA)-dependent phosphorylation are crucial for normal pacemaker function of sinoatrial nodal cells (SANC). Because local Ca(2+) releases occur beneath the cell surface membrane, near to where adenylyl cyclases (ACs) reside, we hypothesized that the dual Ca(2+) and cAMP/PKA regulatory components of automaticity are coupled via Ca(2+) activation of AC activity within membrane microdomains. Here we show by quantitative reverse transcriptase PCR that SANC express Ca(2+)-activated AC isoforms 1 and 8, in addition to AC type 2, 5, and 6 transcripts. Immunolabeling of cell fractions, isolated by sucrose gradient ultracentrifugation, confirmed that ACs localize to membrane lipid microdomains. AC activity within these lipid microdomains is activated by Ca(2+) over the entire physiological Ca(2+) range. In intact SANC, the high basal AC activity produces a high level of cAMP that is further elevated by phosphodiesterase inhibition. cAMP and cAMP-mediated PKA-dependent activation of ion channels and Ca(2+) cycling proteins drive sarcoplasmic reticulum Ca(2+) releases, which, in turn, activate ACs. This feed forward "fail safe" system, kept in check by a high basal phosphodiesterase activity, is central to the generation of normal rhythmic, spontaneous action potentials by pacemaker cells.


Subject(s)
Adenylyl Cyclases/metabolism , Calcium/pharmacology , Membrane Lipids/metabolism , Membrane Microdomains/enzymology , Sinoatrial Node/cytology , Sinoatrial Node/enzymology , Adenylyl Cyclases/genetics , Animals , Calcium/metabolism , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Enzyme Activation , Gene Expression Regulation , Isoenzymes/genetics , Isoenzymes/metabolism , Membrane Microdomains/drug effects , RNA, Messenger/genetics , Rabbits
18.
Circ Res ; 102(7): 761-9, 2008 Apr 11.
Article in English | MEDLINE | ID: mdl-18276917

ABSTRACT

Spontaneous beating of rabbit sinoatrial node cells (SANCs) is controlled by cAMP-mediated, protein kinase A-dependent local subsarcolemmal ryanodine receptor Ca(2+) releases (LCRs). LCRs activated an inward Na(+)/Ca(2+) exchange current that increases the terminal diastolic depolarization rate and, therefore, the spontaneous SANC beating rate. Basal cAMP in SANCs is elevated, suggesting that cAMP degradation by phosphodiesterases (PDEs) may be low. Surprisingly, total suppression of PDE activity with a broad-spectrum PDE inhibitor, 3'-isobutylmethylxanthine (IBMX), produced a 9-fold increase in the cAMP level, doubled cAMP-mediated, protein kinase A-dependent phospholamban phosphorylation, and increased SANC firing rate by approximately 55%, indicating a high basal activity of PDEs in SANCs. A comparison of specific PDE1 to -5 inhibitors revealed that the specific PDE3 inhibitor, milrinone, accelerated spontaneous firing by approximately 47% (effects of others were minor) and increased amplitude of L-type Ca(2+) current (I(Ca,L)) by approximately 46%, indicating that PDE3 was the major constitutively active PDE in the basal state. PDE-dependent control of the spontaneous SANC firing was critically dependent on subsarcolemmal LCRs, ie, PDE inhibition increased LCR amplitude and size and decreased LCR period, leading to earlier and augmented LCR Ca(2+) release, Na(+)/Ca(2+) exchange current, and an increase in the firing rate. When ryanodine receptors were disabled by ryanodine, neither IBMX nor milrinone was able to amplify LCRs, accelerate diastolic depolarization rate, or increase the SANC firing rate, despite preserved PDE inhibition-induced augmentation of I(Ca,L) amplitude. Thus, basal constitutive PDE activation provides a novel and powerful mechanism to decrease cAMP, limit cAMP-mediated, protein kinase A-dependent increase of diastolic ryanodine receptor Ca(2+) release, and restrict the spontaneous SANC beating rate.


Subject(s)
Biological Clocks/physiology , Calcium/metabolism , Heart Rate/physiology , Phosphoric Diester Hydrolases/metabolism , Sinoatrial Node/metabolism , 1-Methyl-3-isobutylxanthine/pharmacology , Animals , Calcium-Binding Proteins/metabolism , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Enzyme Activation , Patch-Clamp Techniques , Phosphodiesterase Inhibitors/pharmacology , Phosphoric Diester Hydrolases/drug effects , Phosphorylation , Rabbits , Ryanodine Receptor Calcium Release Channel/metabolism , Signal Transduction/physiology , Sinoatrial Node/pathology
19.
Circ Res ; 100(12): 1723-31, 2007 Jun 22.
Article in English | MEDLINE | ID: mdl-17525366

ABSTRACT

Spontaneous, localized, rhythmic ryanodine receptor (RyRs) Ca(2+) releases occur beneath the cell membrane during late diastolic depolarization in cardiac sinoatrial nodal cells (SANCs). These activate the Na(+)/Ca(2+) exchanger (NCX1) to generate inward current and membrane excitation that drives normal spontaneous beating. The morphological background for the proposed functional of RyR and NCX crosstalk, however, has not been demonstrated. Here we show that the average isolated SANC whole cell labeling density of RyRs and SERCA2 is similar to atrial and ventricle myocytes, and is similar among SANCs of all sizes. Labeling of NCX1 is also similar among SANCs of all sizes and exceeds that in atrial and ventricle myocytes. Submembrane colocalization of NCX1 and cardiac RyR (cRyR) in all SANCs exceeds that in the other cell types. Further, the Cx43 negative primary pacemaker area of the intact rabbit sinoatrial node (SAN) exhibits robust positive labeling for cRyR, NCX1, and SERCA2. Functional studies in isolated SANCs show that neither the average action potential (AP) characteristics, nor those of intracellular Ca(2+) releases, nor the spontaneous cycle length vary with cell size. Chelation of intracellular [Ca(2+)], or disabling RyRs or NCX1, markedly attenuates or abolishes spontaneous SANC beating in all SANCs. Thus, there is dense labeling of SERCA2, RyRs, and NCX1 in small-sized SANCs, thought to reside within the SAN center, the site of impulse initiation. Because normal automaticity of these cells requires intact Ca(2+) cycling, interactions of SERCA, RyR2 and NCX molecules are implicated in the initiation of the SAN impulse.


Subject(s)
Cell Size , Ryanodine Receptor Calcium Release Channel/physiology , Sarcoplasmic Reticulum Calcium-Transporting ATPases/physiology , Sinoatrial Node/cytology , Sinoatrial Node/physiology , Sodium-Calcium Exchanger/physiology , Action Potentials/physiology , Animals , Atrial Function/physiology , Calcium/metabolism , Heart Atria/cytology , Heart Ventricles/cytology , Microscopy, Confocal , Myocytes, Cardiac/cytology , Myocytes, Cardiac/physiology , Patch-Clamp Techniques , Rabbits , Ventricular Function
20.
Circ Res ; 99(9): 979-87, 2006 Oct 27.
Article in English | MEDLINE | ID: mdl-17008599

ABSTRACT

Stochastic but roughly periodic LCRs (Local subsarcolemmal ryanodine receptor-mediated Ca(2+) Releases) during the late phase of diastolic depolarization (DD) in rabbit sinoatrial nodal pacemaker cells (SANCs) generate an inward current (I(NCX)) via the Na(+)/Ca(2+) exchanger. Although LCR characteristics have been correlated with spontaneous beating, the specific link between LCR characteristics and SANC spontaneous beating rate, ie, impact of LCRs on the fine structure of the DD, have not been explicitly defined. Here we determined how LCRs and resultant I(NCX) impact on the DD fine structure to control the spontaneous SANC firing rate. Membrane potential (V(m)) recordings combined with confocal Ca(2+) measurements showed that LCRs impart a nonlinear, exponentially rising phase to the DD later part, which exhibited beat-to-beat V(m) fluctuations with an amplitude of approximately 2 mV. Maneuvers that altered LCR timing or amplitude of the nonlinear DD (ryanodine, BAPTA, nifedipine or isoproterenol) produced corresponding changes in V(m) fluctuations during the nonlinear DD component, and the V(m) fluctuation response evoked by these maneuvers was tightly correlated with the concurrent changes in spontaneous beating rate induced by these perturbations. Numerical modeling, using measured LCR characteristics under these perturbations, predicted a family of local I(NCX) that reproduced V(m) fluctuations measured experimentally and determined the onset and amplitude of the nonlinear DD component and the beating rate. Thus, beat-to-beat V(m) fluctuations during late DD phase reflect the underlying LCR/I(NCX) events, and the ensemble of these events forms the nonlinear DD component that ultimately controls the SANC chronotropic state in tight cooperation with surface membrane ion channels.


Subject(s)
Calcium/metabolism , Sarcoplasmic Reticulum/metabolism , Sinoatrial Node/physiology , Action Potentials , Animals , Diastole , Electric Conductivity , Membrane Potentials , Patch-Clamp Techniques , Periodicity , Rabbits , Sinoatrial Node/cytology , Sinoatrial Node/metabolism , Sodium-Calcium Exchanger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...