Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Photochem Photobiol ; 78(3): 248-55, 2003 Sep.
Article in English | MEDLINE | ID: mdl-14556311

ABSTRACT

Biomolecules common in blood plasma, including 2-methyl-1,4-naphthoquinone (vitamin K-0, 2), 2,3-dimethoxy-5-methyl-1,4-benzoquinone (ubiquinone-0, 3), bilirubin, 4, and urocanic acid, 5, were used as photoactivators for the photooxidation of methyl linoleate (ML) in 0.50 M sodium dodecyl sulfate micelles to mimic a bioenvironment. UV irradiation of 2 in this system initiated H-atom abstraction from ML (Type-I mechanism). The evidence includes kinetics of oxygen uptake, inhibition of oxidation by an antioxidant ((R)-(+)-6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid [Trolox], 7) and the analysis of four geometric hydroperoxides formed (cis, trans to trans, trans ratio of 0.5). In contrast, irradiation with a singlet-oxygen sensitizer, 3,5-di-t-butyl-1,2-benzoquinone, 1, formed six isomers by a Type-II mechanism, yielding a cis, trans to trans, trans isomer ratio of 6. Peroxidation activated by 3 or 4 with visible light occurred by a singlet-oxygen pathway (Type-II mechanism), as shown by kinetics of oxygen uptake and the effect of quenchers. In contrast, peroxidation in the presence of 5 in this system initiated H-atom abstraction from ML as shown by oxygen uptake and inhibition by Trolox. A comparison of thermal free-radical peroxidation with direct photooxidation of human blood plasma samples showed important differences. Blood plasma resisted thermal peroxidation because of natural antioxidants or on the addition of Trolox. In contrast, direct photooxidation involved singlet oxygen, according to the effect of quenchers and the lack of inhibition by antioxidants.


Subject(s)
Free Radicals , Micelles , Peroxides/metabolism , Singlet Oxygen , Humans , Kinetics , Oxidation-Reduction , Photochemistry
2.
J Org Chem ; 67(15): 5190-6, 2002 Jul 26.
Article in English | MEDLINE | ID: mdl-12126405

ABSTRACT

1,8-Naphthalenediol, 5, and its 4-methoxy derivative, 6, were found to be potent H-atom transfer (HAT) compounds on the basis of their rate constants for H-atom transfer to the 2,2-di(4-t-octylphenyl)-1-picrylhydrazyl radical (DOPPH*), k(ArOH/DOPPH)*, or as antioxidants during inhibited styrene autoxidation, k(ArOH/ROO)*, initiated with AIBN. The rate constants showed that 5 and 6 are more active HAT compounds than the ortho-diols, catechol, 1, 2,3-naphthalenediol, 2, and 3,5-di-tert-butylcatechol, 3. Compound 6 has almost twice the antioxidant activity, k(ArOH/ROO)* = 6.0 x 10(6) M(-)(1) s(-1), of that of the vitamin E model compound, 2,2,5,7,8-pentamethyl-6-chromanol, 4. Calculations of the O-H bond dissociation enthalpies compared to those of phenols, (deltaBDEs), of 1-6 predict a HAT order of reactivity of 2 < 1 < 3 approximately 4 < 5 < 6 in general agreement with kinetic results. Calculations on the diols show that intramolecular H-bonding stabilizes the radicals formed on H-atom transfer more than it does the parent diols, and this effect contributes to the increased HAT activity of 5 and 6 compared to the activities of the catechols. For example, the increased stabilization due to the intramolecular H-bond of 5 radical over 5 parent of 8.6 kcal/mol was about double that of 2 radical over 2 parent of 4.6 kcal/mol. Linear free energy plots of log k(ArOH/DOPPH)* and log k(ArOH/ROO)* versus deltaBDEs for compounds 1-6 along with available literature values for nonsterically hindered monophenols placed the compounds on common scales. The derived Evans-Polanyi constants from the plots for the two reactions, alpha(DOPPH)* = 0.48 > alpha(ROO)* = 0.32, gave the expected order, since the ROO* reaction is more exothermic than the DOPPH* reaction. Compound 6 is sufficiently reactive to react directly with oxygen, and it lies off the log k(ArOH/ROO)* versus deltaBDE plot.


Subject(s)
Antioxidants , Catechols , Hydrogen/chemistry , Naphthalenes , Antioxidants/chemical synthesis , Antioxidants/chemistry , Antioxidants/pharmacology , Catechols/chemical synthesis , Catechols/chemistry , Catechols/pharmacology , Hydrogen Bonding , Kinetics , Molecular Structure , Naphthalenes/chemical synthesis , Naphthalenes/chemistry , Naphthalenes/pharmacology , Thermodynamics , Vitamin E/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...