Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
PLoS Biol ; 21(5): e3002127, 2023 05.
Article in English | MEDLINE | ID: mdl-37200394

ABSTRACT

Receptors that distinguish the multitude of microbes surrounding plants in the environment enable dynamic responses to the biotic and abiotic conditions encountered. In this study, we identify and characterise a glycan receptor kinase, EPR3a, closely related to the exopolysaccharide receptor EPR3. Epr3a is up-regulated in roots colonised by arbuscular mycorrhizal (AM) fungi and is able to bind glucans with a branching pattern characteristic of surface-exposed fungal glucans. Expression studies with cellular resolution show localised activation of the Epr3a promoter in cortical root cells containing arbuscules. Fungal infection and intracellular arbuscule formation are reduced in epr3a mutants. In vitro, the EPR3a ectodomain binds cell wall glucans in affinity gel electrophoresis assays. In microscale thermophoresis (MST) assays, rhizobial exopolysaccharide binding is detected with affinities comparable to those observed for EPR3, and both EPR3a and EPR3 bind a well-defined ß-1,3/ß-1,6 decasaccharide derived from exopolysaccharides of endophytic and pathogenic fungi. Both EPR3a and EPR3 function in the intracellular accommodation of microbes. However, contrasting expression patterns and divergent ligand affinities result in distinct functions in AM colonisation and rhizobial infection in Lotus japonicus. The presence of Epr3a and Epr3 genes in both eudicot and monocot plant genomes suggest a conserved function of these receptor kinases in glycan perception.


Subject(s)
Lotus , Mycorrhizae , Rhizobium , Mycorrhizae/genetics , Lotus/genetics , Lotus/metabolism , Lotus/microbiology , Root Nodules, Plant/genetics , Root Nodules, Plant/metabolism , Root Nodules, Plant/microbiology , Rhizobium/metabolism , Plant Roots/metabolism , Mutation , Symbiosis/genetics , Phosphotransferases/metabolism , Polysaccharides/metabolism , Glucans/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
2.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Article in English | MEDLINE | ID: mdl-34716271

ABSTRACT

Plants and animals use cell surface receptors to sense and interpret environmental signals. In legume symbiosis with nitrogen-fixing bacteria, the specific recognition of bacterial lipochitooligosaccharide (LCO) signals by single-pass transmembrane receptor kinases determines compatibility. Here, we determine the structural basis for LCO perception from the crystal structures of two lysin motif receptor ectodomains and identify a hydrophobic patch in the binding site essential for LCO recognition and symbiotic function. We show that the receptor monitors the composition of the amphiphilic LCO molecules and uses kinetic proofreading to control receptor activation and signaling specificity. We demonstrate engineering of the LCO binding site to fine-tune ligand selectivity and correct binding kinetics required for activation of symbiotic signaling in plants. Finally, the hydrophobic patch is found to be a conserved structural signature in this class of LCO receptors across legumes that can be used for in silico predictions. Our results provide insights into the mechanism of cell-surface receptor activation by kinetic proofreading of ligands and highlight the potential in receptor engineering to capture benefits in plant-microbe interactions.


Subject(s)
Fabaceae/genetics , Lipopolysaccharides/metabolism , Symbiosis/physiology , Fabaceae/metabolism , Gene Expression/genetics , Gene Expression Regulation, Plant/genetics , Kinetics , Lipopolysaccharides/genetics , Mycorrhizae/physiology , Plant Proteins/genetics , Plants/metabolism , Rhizobium/physiology , Signal Transduction , Symbiosis/genetics
3.
Nat Commun ; 11(1): 3797, 2020 07 30.
Article in English | MEDLINE | ID: mdl-32732998

ABSTRACT

Receptor-mediated perception of surface-exposed carbohydrates like lipo- and exo-polysaccharides (EPS) is important for non-self recognition and responses to microbial associated molecular patterns in mammals and plants. In legumes, EPS are monitored and can either block or promote symbiosis with rhizobia depending on their molecular composition. To establish a deeper understanding of receptors involved in EPS recognition, we determined the structure of the Lotus japonicus (Lotus) exopolysaccharide receptor 3 (EPR3) ectodomain. EPR3 forms a compact structure built of three putative carbohydrate-binding modules (M1, M2 and LysM3). M1 and M2 have unique ßαßß and ßαß folds that have not previously been observed in carbohydrate binding proteins, while LysM3 has a canonical ßααß fold. We demonstrate that this configuration is a structural signature for a ubiquitous class of receptors in the plant kingdom. We show that EPR3 is promiscuous, suggesting that plants can monitor complex microbial communities though this class of receptors.


Subject(s)
Lipopolysaccharides/metabolism , Lotus/microbiology , Lotus/physiology , Mesorhizobium/metabolism , Plant Proteins/metabolism , Amino Acid Sequence , Mesorhizobium/genetics , Nitrogen Fixation/physiology , Plant Proteins/genetics , Protein Folding , Root Nodules, Plant/microbiology , Root Nodules, Plant/physiology , Symbiosis/physiology
4.
Science ; 369(6504): 663-670, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32764065

ABSTRACT

Plants evolved lysine motif (LysM) receptors to recognize and parse microbial elicitors and drive intracellular signaling to limit or facilitate microbial colonization. We investigated how chitin and nodulation (Nod) factor receptors of Lotus japonicus initiate differential signaling of immunity or root nodule symbiosis. Two motifs in the LysM1 domains of these receptors determine specific recognition of ligands and discriminate between their in planta functions. These motifs define the ligand-binding site and make up the most structurally divergent regions in cognate Nod factor receptors. An adjacent motif modulates the specificity for Nod factor recognition and determines the selection of compatible rhizobial symbionts in legumes. We also identified how binding specificities in LysM receptors can be altered to facilitate Nod factor recognition and signaling from a chitin receptor, advancing the prospects of engineering rhizobial symbiosis into nonlegumes.


Subject(s)
Lotus/enzymology , Plant Proteins/chemistry , Protein Kinases/chemistry , Amino Acid Motifs , Chitin/chemistry , Ligands , Protein Domains
5.
Elife ; 72018 10 04.
Article in English | MEDLINE | ID: mdl-30284535

ABSTRACT

Morphogens provide positional information and their concentration is key to the organized development of multicellular organisms. Nitrogen-fixing root nodules are unique organs induced by Nod factor-producing bacteria. Localized production of Nod factors establishes a developmental field within the root where plant cells are reprogrammed to form infection threads and primordia. We found that regulation of Nod factor levels by Lotus japonicus is required for the formation of nitrogen-fixing organs, determining the fate of this induced developmental program. Our analysis of plant and bacterial mutants shows that a host chitinase modulates Nod factor levels possibly in a structure-dependent manner. In Lotus, this is required for maintaining Nod factor signalling in parallel with the elongation of infection threads within the nodule cortex, while root hair infection and primordia formation are not influenced. Our study shows that infected nodules require balanced levels of Nod factors for completing their transition to functional, nitrogen-fixing organs.


Subject(s)
Chitinases/genetics , Nitrogen-Fixing Bacteria/genetics , Root Nodules, Plant/microbiology , Symbiosis/genetics , Chitinases/metabolism , Gene Expression Regulation, Plant , Lipopolysaccharides/genetics , Lotus/chemistry , Lotus/genetics , Nitrogen/metabolism , Nitrogen-Fixing Bacteria/metabolism , Plant Roots/metabolism , Plant Roots/microbiology , Root Nodules, Plant/genetics
6.
Elife ; 72018 06 29.
Article in English | MEDLINE | ID: mdl-29957177

ABSTRACT

Recognition of Nod factors by LysM receptors is crucial for nitrogen-fixing symbiosis in most legumes. The large families of LysM receptors in legumes suggest concerted functions, yet only NFR1 and NFR5 and their closest homologs are known to be required. Here we show that an epidermal LysM receptor (NFRe), ensures robust signalling in L. japonicus. Mutants of Nfre react to Nod factors with increased calcium spiking interval, reduced transcriptional response and fewer nodules in the presence of rhizobia. NFRe has an active kinase capable of phosphorylating NFR5, which in turn, controls NFRe downstream signalling. Our findings provide evidence for a more complex Nod factor signalling mechanism than previously anticipated. The spatio-temporal interplay between Nfre and Nfr1, and their divergent signalling through distinct kinases suggests the presence of an NFRe-mediated idling state keeping the epidermal cells of the expanding root system attuned to rhizobia.


Subject(s)
Gene Expression Regulation, Plant , Lipopolysaccharides/genetics , Lotus/metabolism , Plant Proteins/genetics , Receptors, Cell Surface/genetics , Rhizobium/metabolism , Root Nodules, Plant/metabolism , Calcium/metabolism , Lipopolysaccharides/metabolism , Lotus/genetics , Lotus/microbiology , Mutation , Nitrogen Fixation/physiology , Phosphorylation , Plant Cells/metabolism , Plant Cells/microbiology , Plant Proteins/metabolism , Plant Root Nodulation/genetics , Receptors, Cell Surface/metabolism , Rhizobium/genetics , Root Nodules, Plant/genetics , Root Nodules, Plant/microbiology , Signal Transduction , Symbiosis/physiology
7.
Proc Natl Acad Sci U S A ; 114(38): E8118-E8127, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28874587

ABSTRACT

The ability of root cells to distinguish mutualistic microbes from pathogens is crucial for plants that allow symbiotic microorganisms to infect and colonize their internal root tissues. Here we show that Lotus japonicus and Medicago truncatula possess very similar LysM pattern-recognition receptors, LjLYS6/MtLYK9 and MtLYR4, enabling root cells to separate the perception of chitin oligomeric microbe-associated molecular patterns from the perception of lipochitin oligosaccharide by the LjNFR1/MtLYK3 and LjNFR5/MtNFP receptors triggering symbiosis. Inactivation of chitin-receptor genes in Ljlys6, Mtlyk9, and Mtlyr4 mutants eliminates early reactive oxygen species responses and induction of defense-response genes in roots. Ljlys6, Mtlyk9, and Mtlyr4 mutants were also more susceptible to fungal and bacterial pathogens, while infection and colonization by rhizobia and arbuscular mycorrhizal fungi was maintained. Biochemical binding studies with purified LjLYS6 ectodomains further showed that at least six GlcNAc moieties (CO6) are required for optimal binding efficiency. The 2.3-Å crystal structure of the LjLYS6 ectodomain reveals three LysM ßααß motifs similar to other LysM proteins and a conserved chitin-binding site. These results show that distinct receptor sets in legume roots respond to chitin and lipochitin oligosaccharides found in the heterogeneous mixture of chitinaceous compounds originating from soil microbes. This establishes a foundation for genetic and biochemical dissection of the perception and the downstream responses separating defense from symbiosis in the roots of the 80-90% of land plants able to develop rhizobial and/or mycorrhizal endosymbiosis.


Subject(s)
Chitin/metabolism , Lotus , Medicago truncatula , Plant Proteins , Plant Roots , Receptors, Pattern Recognition , Amino Acid Motifs , Crystallography, X-Ray , Lotus/chemistry , Lotus/genetics , Lotus/metabolism , Lotus/microbiology , Medicago truncatula/chemistry , Medicago truncatula/genetics , Medicago truncatula/metabolism , Medicago truncatula/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/chemistry , Plant Roots/genetics , Plant Roots/metabolism , Plant Roots/microbiology , Protein Domains , Reactive Oxygen Species/metabolism , Receptors, Pattern Recognition/chemistry , Receptors, Pattern Recognition/genetics , Receptors, Pattern Recognition/metabolism
8.
Proc Natl Acad Sci U S A ; 109(34): 13859-64, 2012 Aug 21.
Article in English | MEDLINE | ID: mdl-22859506

ABSTRACT

Lipochitin oligosaccharides called Nod factors function as primary rhizobial signal molecules triggering legumes to develop new plant organs: root nodules that host the bacteria as nitrogen-fixing bacteroids. Here, we show that the Lotus japonicus Nod factor receptor 5 (NFR5) and Nod factor receptor 1 (NFR1) bind Nod factor directly at high-affinity binding sites. Both receptor proteins were posttranslationally processed when expressed as fusion proteins and extracted from purified membrane fractions of Nicotiana benthamiana or Arabidopsis thaliana. The N-terminal signal peptides were cleaved, and NFR1 protein retained its in vitro kinase activity. Processing of NFR5 protein was characterized by determining the N-glycosylation patterns of the ectodomain. Two different glycan structures with identical composition, Man(3)XylFucGlcNAc(4), were identified by mass spectrometry and located at amino acid positions N68 and N198. Receptor-ligand interaction was measured by using ligands that were labeled or immobilized by application of chemoselective chemistry at the anomeric center. High-affinity ligand binding was demonstrated with both solid-phase and free solution techniques. The K(d) values obtained for Nod factor binding were in the nanomolar range and comparable to the concentration range sufficient for biological activity. Structure-dependent ligand specificity was shown by using chitin oligosaccharides. Taken together, our results suggest that ligand recognition through direct ligand binding is a key step in the receptor-mediated activation mechanism leading to root nodule development in legumes.


Subject(s)
Fabaceae/metabolism , Oligosaccharides/chemistry , Rhizobium/metabolism , Amino Acid Motifs , Binding Sites , Fabaceae/microbiology , Kinetics , Ligands , Mass Spectrometry/methods , Models, Biological , Mucoproteins/chemistry , Phosphorylation , Plant Proteins/metabolism , Plants/microbiology , Polysaccharides/chemistry , Protein Binding , Symbiosis
10.
Biochemistry ; 47(27): 7127-36, 2008 Jul 08.
Article in English | MEDLINE | ID: mdl-18553933

ABSTRACT

Cellular forms of type IB topoisomerases distinguish themselves from their viral counterparts and the tyrosine recombinases to which they are closely related by having rather extensive N-terminal and linker domains. The functions and necessity of these domains are not yet fully unraveled. In this study we replace 86 amino acids including the linker domain of the cellular type IB topoisomerase, human topoisomerase I, with four, six, or eight amino acids from the corresponding short loop region in Cre recombinase. In vitro characterization of the resulting chimeras, denoted Cropos, reveals that six amino acids from the Cre linker loop constitute the minimal length of a functional linker in human topoisomerase I.


Subject(s)
DNA Topoisomerases, Type I/chemistry , DNA Topoisomerases, Type I/metabolism , Integrases/chemistry , Integrases/metabolism , Camptothecin/pharmacology , DNA/metabolism , Humans , Hydrogen Peroxide/pharmacology , Protein Structure, Secondary , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sodium Chloride/pharmacology , Structure-Activity Relationship
11.
Eur J Biochem ; 270(17): 3651-5, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12919330

ABSTRACT

Caseins are highly phosphorylated milk proteins assembled in large colloidal structures termed micelles. In the milk of ruminants, alphas1-casein has been shown to be extensively phosphorylated. In this report we have determined the phosphorylation pattern of human alphas1-casein by a combination of matrix-assisted laser desorption mass spectrometry and amino acid sequence analysis. Three phosphorylation variants were identified. A nonphosphorylated form, a variant phosphorylated at Ser18 and a variant phosphorylated at Ser18 and Ser26. Both phosphorylation sites are located in the amino acid recognition sequence of the mammary gland casein kinase. Notably, no phosphorylations were observed in the conserved region covering residues Ser70-Glu78, which is extensively phosphorylated in the ruminant alphas1-caseins.


Subject(s)
Caseins/metabolism , Amino Acid Sequence , Animals , Binding Sites , Caseins/analysis , Conserved Sequence , Glycosylation , Humans , Mammary Glands, Animal/enzymology , Milk, Human/chemistry , Molecular Sequence Data , Peptide Fragments/analysis , Phosphorylation , Protein Kinases/genetics , Ruminants , Species Specificity , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...