Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38475321

ABSTRACT

In the present work, the effects of carbon-based nanofillers (0.5 wt%), i.e., graphene nanoplatelets (GNPs), carbon nanofibers (CNFs), and carbon nanotubes (CNTs), on the cryogenic temperature (77 K) mechanical properties of carbon fiber reinforced polymers (CFRPs) were investigated. The study utilized an ex situ conditioning method for cryogenic tests. The nanofillers were mixed with the epoxy matrix by a solvent-free fluidized bed mixing technique (FBM), while unidirectional carbon fibers were impregnated with the resulting nanocomposites to manufacture CFRP samples. Optical microscopy was employed to analyze the dispersion of the carbon-based fillers within the matrix, revealing a homogeneous distribution in nanocomposites containing GNPs and CNFs. Fracture toughness tests confirmed the homogeneity of the GNP-loaded systems, showing an improvement in the stress intensity factor (KC) by 13.2% and 14.7% compared to the unmodified matrix at RT (25 °C) and 77 K, respectively; moreover, flexural tests demonstrated a general increase in flexural strength with the presence of carbon-based nanofillers at both temperature levels (RT and 77 K). Additionally, interlaminar shear strength (ILSS) tests were performed and analyzed using the same ex situ conditioning method.

2.
Polymers (Basel) ; 14(23)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36501499

ABSTRACT

In this work, the effect of different mixing techniques on thermal and mechanical properties of graphene nanoplatelets (GNPs) and graphene nanofibers (GANFs) loaded epoxy nanocomposites was investigated. Three dispersion methods were employed: a high shear rate (HSR), ultrasonication (US) and the fluidized bed method (FBM). The optical microscopy has revealed that the most suitable dispersion, in terms of homogeneity and cluster size, is achieved by implementing the US and FBM techniques, leading to nanocomposites with the largest increase of glass transition temperature, as supported by the DMA analysis data. The fracture toughness results show a general increase of both the critical stress intensity factor (KIC) and the critical strain energy release rate (GIC), likely due to the homogeneity and the low scale dispersion of the carbonaceous nanostructures. Based on the nanocomposite fracture toughness improvements and also assuming a potential large scale up production of the nanocomposite matrix, a single mixing technique, namely the FBM, was employed to manufacture the carbon fiber reinforced composite (CFRC). This method has resulted in being less time-consuming and is potentially most suitable for the high volume industrial production. The CFRCs were characterized in terms of tensile, flexural and interlaminar fracture toughness properties and the results were analyzed and discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...