Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-478759

ABSTRACT

Accurate, high-resolution environmental monitoring of SARS-CoV-2 traces indoors through sentinel cards is a promising approach to help students safely return to in-person learning. Because SARS-CoV-2 RNA can persist for up to a week on several indoor surface types, there is a need for increased temporal resolution to determine whether consecutive surface positives arise from new infection events or continue to report past events. Cleaning sentinel cards after sampling would provide the needed resolution, but might interfere with assay performance. We tested the effect of three cleaning solutions (BZK wipes, wet wipes, RNase Away) at three different viral loads: "high" (4 x 104 GE/mL), "medium" (1 x 104 GE/mL), and "low" (2.5 x 103 GE/mL). RNAse Away, chosen as a positive control, was the most effective cleaning solution on all three viral loads. Wet wipes were found to be more effective than BZK wipes in the medium viral load condition. The low viral load condition was easily reset with all three cleaning solutions. These findings will enable temporal SARS-CoV-2 monitoring in indoor environments where transmission risk of the virus is high and the need to avoid individual-level sampling for privacy or compliance reasons exists. ImportanceBecause SARS-CoV-2, the virus that causes COVID-19, persists on surfaces, testing swabs taken from surfaces is useful as a monitoring tool. This approach is especially valuable in school settings, where there are cost and privacy concerns that are eliminated by taking a single sample from a classroom. However, the virus persists for days to weeks on surface samples, so it is impossible to tell whether positive detection events on consecutive days are persistent signal or new infectious cases, and therefore whether the positive individuals have been successfully removed from the classroom. We compare several methods for cleaning "sentinel cards" to show that this approach can be used to identify new SARS-CoV-2 signals day to day. The results are important for determining how to monitor classrooms and other indoor environments for SARS-CoV-2 virus.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21265226

ABSTRACT

Schools are high-risk settings for SARS-CoV-2 transmission, but necessary for childrens educational and social-emotional wellbeing. While wastewater monitoring has been implemented to mitigate outbreak risk in universities and residential settings, its effectiveness in community K-12 sites is unknown. We implemented a wastewater and surface monitoring system to detect SARS-CoV-2 in nine elementary schools in San Diego County. Ninety-three percent of identified cases were associated with either a positive wastewater or surface sample; 67% were associated with a positive wastewater sample, and 40% were associated with a positive surface sample. The techniques we utilized allowed for near-complete genomic sequencing of wastewater and surface samples. Passive environmental surveillance can complement approaches that require individual consent, particularly in communities with limited access and/or high rates of testing hesitancy. One sentence summaryPassive wastewater and surface environmental surveillance can identify up to 93% of on-campus COVID-19 cases in public elementary schools; positive samples can be sequenced to monitor for variants of concerns with neighborhood level resolution.

SELECTION OF CITATIONS
SEARCH DETAIL
...