Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 124(14): 140502, 2020 Apr 10.
Article in English | MEDLINE | ID: mdl-32338970

ABSTRACT

Machine learning methods have proved to be useful for the recognition of patterns in statistical data. The measurement outcomes are intrinsically random in quantum physics, however, they do have a pattern when the measurements are performed successively on an open quantum system. This pattern is due to the system-environment interaction and contains information about the relaxation rates as well as non-Markovian memory effects. Here we develop a method to extract the information about the unknown environment from a series of projective single-shot measurements on the system (without resorting to the process tomography). The method is based on embedding the non-Markovian system dynamics into a Markovian dynamics of the system and the effective reservoir of finite dimension. The generator of Markovian embedding is learned by the maximum likelihood estimation. We verify the method by comparing its prediction with an exactly solvable non-Markovian dynamics. The developed algorithm to learn unknown quantum environments enables one to efficiently control and manipulate quantum systems.

2.
Phys Rev Lett ; 122(16): 160401, 2019 Apr 26.
Article in English | MEDLINE | ID: mdl-31075029

ABSTRACT

The difficulty to simulate the dynamics of open quantum systems resides in their coupling to many-body reservoirs with exponentially large Hilbert space. Applying a tensor network approach in the time domain, we demonstrate that effective small reservoirs can be defined and used for modeling open quantum dynamics. The key element of our technique is the timeline reservoir network (TRN), which contains all the information on the reservoir's characteristics, in particular, the memory effects timescale. The TRN has a one-dimensional tensor network structure, which can be effectively approximated in full analogy with the matrix product approximation of spin-chain states. We derive the sufficient bond dimension in the approximated TRN with a reduced set of physical parameters: coupling strength, reservoir correlation time, minimal timescale, and the system's number of degrees of freedom interacting with the environment. The bond dimension can be viewed as a measure of the open dynamics complexity. Simulation is based on the semigroup dynamics of the system and effective reservoir of finite dimension. We provide an illustrative example showing the scope for new numerical and machine learning-based methods for open quantum systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...