Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Bioallied Sci ; 16(Suppl 2): S1263-S1269, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38882802

ABSTRACT

Background: Nonessential heavy metals pose a significant threat to human health due to their toxicity. Mercury, in particular, is identified as a hazardous metal. The study aims to detect mercury using colorimetric analysis with Murraya koenigii, emphasizing the eco-friendliness of the method. Aims and Objectives: The primary objective is to detect mercury using a colorimetric analysis method employing Murraya koenigii. Additionally, the study aims to investigate the eco-friendliness of this detection method. Materials and Methods: Colorimetric analysis was conducted using Murraya koenigii to detect mercury. Ultraviolet-visible (UV-vis) spectroscopy was employed to detect the formation of silver nanoparticles (AgNPs), with a characteristic surface plasmon resonance (SPR) band observed. X-ray diffraction (XRD) data analysis was performed to determine the crystalline nature and size of AgNPs. Scanning electron microscopy (SEM) was utilized to visualize the morphology of AgNPs. Fourier transform infrared (FTIR) spectroscopy was employed to identify functional groups involved in reducing silver ions. Antibacterial properties of synthesized AgNPs were tested against various microorganisms, including Escherichia coli, Staphylococcus aureus, Streptococcus mutans, and Enterococcus faecalis. Results: Mercury was successfully detected using colorimetric analysis with Murraya koenigii. Formation of AgNPs was confirmed by UV-vis spectroscopy, with a characteristic SPR band at 418 nm. AgNPs were found to be crystalline with an average size of 5.20 nm, as determined by XRD analysis. SEM images revealed spherical and polycrystalline AgNPs. FTIR spectra indicated the involvement of the -OH group of compounds in the extract in reducing silver ions. Synthesized AgNPs exhibited antibacterial properties against various microorganisms. Conclusion: A sustainable and eco-friendly method for synthesizing AgNPs using Murraya koenigii extract was successfully developed. This method not only detected mercury but also demonstrated antibacterial properties against various microorganisms. The study underscores the health implications of nonessential heavy metals, emphasizing the importance of eco-friendly detection and mitigation methods.

SELECTION OF CITATIONS
SEARCH DETAIL
...