Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 130(10): 106905, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36962057

ABSTRACT

We investigate the impact of a bosonic degree of freedom on Yu-Shiba-Rusinov states emerging from a magnetic impurity in a conventional superconductor. Starting from the Anderson impurity model, we predict that an additional p-wave conduction band channel opens up if a bosonic mode is coupled to the tunneling between impurity and host, which implies an additional pair of odd-parity Yu-Shiba-Rusinov states. The bosonic mode can be a vibrational mode or the electromagnetic field in a cavity. The exchange couplings in the two channels depend sensitively on the state of the bosonic mode (ground state, few quanta, or classically driven Floquet state), which opens possibilities for phononics or photonics control of such systems, with a rich variety of ground and excited states.

2.
Nano Lett ; 17(4): 2240-2245, 2017 04 12.
Article in English | MEDLINE | ID: mdl-28211276

ABSTRACT

One of the intriguing characteristics of honeycomb lattices is the appearance of a pseudomagnetic field as a result of mechanical deformation. In the case of graphene, the Landau quantization resulting from this pseudomagnetic field has been measured using scanning tunneling microscopy. Here we show that a signature of the pseudomagnetic field is a local sublattice symmetry breaking observable as a redistribution of the local density of states. This can be interpreted as a polarization of graphene's pseudospin due to a strain induced pseudomagnetic field, in analogy to the alignment of a real spin in a magnetic field. We reveal this sublattice symmetry breaking by tunably straining graphene using the tip of a scanning tunneling microscope. The tip locally lifts the graphene membrane from a SiO2 support, as visible by an increased slope of the I(z) curves. The amount of lifting is consistent with molecular dynamics calculations, which reveal a deformed graphene area under the tip in the shape of a Gaussian. The pseudomagnetic field induced by the deformation becomes visible as a sublattice symmetry breaking which scales with the lifting height of the strained deformation and therefore with the pseudomagnetic field strength. Its magnitude is quantitatively reproduced by analytic and tight-binding models, revealing fields of 1000 T. These results might be the starting point for an effective THz valley filter, as a basic element of valleytronics.

SELECTION OF CITATIONS
SEARCH DETAIL
...