Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Sci Food Agric ; 93(4): 961-6, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-22903807

ABSTRACT

BACKGROUND: Bean seeds are an inexpensive source of protein. Anthracnose disease caused by the fungus Colletotrichum lindemuthianum results in serious losses in common bean (Phaseolus vulgaris L.) crops worldwide, affecting any above-ground plant part, and protein dysfunction, inducing the synthesis of proteins that allow plants to improve their stress tolerance. The aim of this study was to evaluate the use of beans damaged by anthracnose disease as a source of peptides with angiotensin-converting enzyme (ACE-I)-inhibitory activity. RESULTS: Protein concentrates from beans spoiled by anthracnose disease and from regular beans as controls were prepared by alkaline extraction and precipitation at isolelectric pH and hydrolysed using Alcalase 2.4 L. The hydrolysates from spoiled beans had ACE-I-inhibitory activity (IC(50) 0.0191 mg protein mL(-1)) and were very similar to those from control beans in terms of ACE-I inhibition, peptide electrophoretic profile and kinetics of hydrolysis. Thus preparation of hydrolysates using beans affected by anthracnose disease would allow for revalorisation of this otherwise wasted product. CONCLUSION: The present results suggest the use of spoiled bean seeds, e.g. anthracnose-damaged beans, as an alternative for the isolation of ACE-I-inhibitory peptides to be further introduced as active ingredients in functional foods.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/pharmacology , Fungi , Peptides/pharmacology , Phaseolus/chemistry , Plant Diseases/microbiology , Protein Hydrolysates/pharmacology , Seeds/chemistry , Hydrolysis , Inhibitory Concentration 50 , Peptides/metabolism , Peptidyl-Dipeptidase A/metabolism , Phaseolus/microbiology , Plant Proteins/metabolism , Plant Proteins/pharmacology , Protein Hydrolysates/metabolism , Seeds/microbiology
2.
Int J Food Sci ; 2013: 584148, 2013.
Article in English | MEDLINE | ID: mdl-26904605

ABSTRACT

The utilization of whole grains in food formulations is nowadays recommended. Extrusion cooking allows obtaining precooked cereal products and a wide range of ready-to-eat foods. Two rice varieties having different amylose content (Fortuna 16% and Paso 144, 27%) were extruded using a Brabender single screw extruder. Factorial experimental design was used to study the effects of extrusion temperature (160, 175, and 190°C) and grits moisture content (14%, 16.5%, and 19%) on extrudate properties. Specific mechanical energy consumption (SMEC), radial expansion (E), specific volume (SV), water absorption (WA), and solubility (S) were determined on each extrudate sample. In general, Fortuna variety showed higher values of SMEC and S (703-409 versus 637-407 J/g; 33.0-21.0 versus 20.1-11.0%, resp.) than those of Paso 144; on the contrary SV (8.64-3.47 versus 8.27-4.53 mL/g) and WA tended to be lower (7.7-5.1 versus 8.4-6.6 mL/g). Both varieties showed similar values of expansion rate (3.60-2.18). Physical characteristics depended on extrusion conditions and rice variety used. The degree of cooking reached by Paso rice samples was lower than that obtained for Fortuna. It is suggested that the presence of germ and bran interfered with the cooking process, decreasing friction level and broadening residence time distribution.

SELECTION OF CITATIONS
SEARCH DETAIL
...