Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Cancer ; 15: 179, 2015 Mar 26.
Article in English | MEDLINE | ID: mdl-25886164

ABSTRACT

BACKGROUND: Systematic analysis of cancer gene-expression patterns using high-throughput transcriptional profiling technologies has led to the discovery and publication of hundreds of gene-expression signatures. However, few public signature values have been cross-validated over multiple studies for the prediction of cancer prognosis and chemosensitivity in the neoadjuvant setting. METHODS: To analyze the prognostic and predictive values of publicly available signatures, we have implemented a systematic method for high-throughput and efficient validation of a large number of datasets and gene-expression signatures. Using this method, we performed a meta-analysis including 351 publicly available signatures, 37,000 random signatures, and 31 breast cancer datasets. Survival analyses and pathologic responses were used to assess prediction of prognosis, chemoresponsiveness, and chemo-drug sensitivity. RESULTS: Among 31 breast cancer datasets and 351 public signatures, we identified 22 validation datasets, two robust prognostic signatures (BRmet50 and PMID18271932Sig33) in breast cancer and one signature (PMID20813035Sig137) specific for prognosis prediction in patients with ER-negative tumors. The 22 validation datasets demonstrated enhanced ability to distinguish cancer gene profiles from random gene profiles. Both prognostic signatures are composed of genes associated with TP53 mutations and were able to stratify the good and poor prognostic groups successfully in 82%and 68% of the 22 validation datasets, respectively. We then assessed the abilities of the two signatures to predict treatment responses of breast cancer patients treated with commonly used chemotherapeutic regimens. Both BRmet50 and PMID18271932Sig33 retrospectively identified those patients with an insensitive response to neoadjuvant chemotherapy (mean positive predictive values 85%-88%). Among those patients predicted to be treatment sensitive, distant relapse-free survival (DRFS) was improved (negative predictive values 87%-88%). BRmet50 was further shown to prospectively predict taxane-anthracycline sensitivity in patients with HER2-negative (HER2-) breast cancer. CONCLUSIONS: We have developed and applied a high-throughput screening method for public cancer signature validation. Using this method, we identified appropriate datasets for cross-validation and two robust signatures that differentiate TP53 mutation status and have prognostic and predictive value for breast cancer patients.


Subject(s)
Breast Neoplasms/genetics , Neoplasm Proteins/biosynthesis , Prognosis , Tumor Suppressor Protein p53/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Bridged-Ring Compounds/therapeutic use , Databases, Genetic , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Kaplan-Meier Estimate , Neoadjuvant Therapy , Neoplasm Proteins/genetics , Receptors, Estrogen/biosynthesis , Receptors, Estrogen/genetics , Taxoids/therapeutic use
2.
PLoS One ; 8(1): e54979, 2013.
Article in English | MEDLINE | ID: mdl-23383020

ABSTRACT

BACKGROUND: Robust transcriptional signatures in cancer can be identified by data similarity-driven meta-analysis of gene expression profiles. An unbiased data integration and interrogation strategy has not previously been available. METHODS AND FINDINGS: We implemented and performed a large meta-analysis of breast cancer gene expression profiles from 223 datasets containing 10,581 human breast cancer samples using a novel data similarity-based approach (iterative EXALT). Cancer gene expression signatures extracted from individual datasets were clustered by data similarity and consolidated into a meta-signature with a recurrent and concordant gene expression pattern. A retrospective survival analysis was performed to evaluate the predictive power of a novel meta-signature deduced from transcriptional profiling studies of human breast cancer. Validation cohorts consisting of 6,011 breast cancer patients from 21 different breast cancer datasets and 1,110 patients with other malignancies (lung and prostate cancer) were used to test the robustness of our findings. During the iterative EXALT analysis, 633 signatures were grouped by their data similarity and formed 121 signature clusters. From the 121 signature clusters, we identified a unique meta-signature (BRmet50) based on a cluster of 11 signatures sharing a phenotype related to highly aggressive breast cancer. In patients with breast cancer, there was a significant association between BRmet50 and disease outcome, and the prognostic power of BRmet50 was independent of common clinical and pathologic covariates. Furthermore, the prognostic value of BRmet50 was not specific to breast cancer, as it also predicted survival in prostate and lung cancers. CONCLUSIONS: We have established and implemented a novel data similarity-driven meta-analysis strategy. Using this approach, we identified a transcriptional meta-signature (BRmet50) in breast cancer, and the prognostic performance of BRmet50 was robust and applicable across a wide range of cancer-patient populations.


Subject(s)
Breast Neoplasms/genetics , Gene Expression Profiling/methods , Analysis of Variance , Breast Neoplasms/pathology , Cluster Analysis , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...