Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Rep ; 6: 28965, 2016 07 05.
Article in English | MEDLINE | ID: mdl-27377618

ABSTRACT

Germline endogenous viral elements (EVEs) genetically preserve viral nucleotide sequences useful to the study of viral evolution, gene mutation, and the phylogenetic relationships among host organisms. Here, we describe a lineage-specific, adeno-associated virus (AAV)-derived endogenous viral element (mAAV-EVE1) found within the germline of numerous closely related marsupial species. Molecular screening of a marsupial DNA panel indicated that mAAV-EVE1 occurs specifically within the marsupial suborder Macropodiformes (present-day kangaroos, wallabies, and related macropodoids), to the exclusion of other Diprotodontian lineages. Orthologous mAAV-EVE1 locus sequences from sixteen macropodoid species, representing a speciation history spanning an estimated 30 million years, facilitated compilation of an inferred ancestral sequence that recapitulates the genome of an ancient marsupial AAV that circulated among Australian metatherian fauna sometime during the late Eocene to early Oligocene. In silico gene reconstruction and molecular modelling indicate remarkable conservation of viral structure over a geologic timescale. Characterisation of AAV-EVE loci among disparate species affords insight into AAV evolution and, in the case of macropodoid species, may offer an additional genetic basis for assignment of phylogenetic relationships among the Macropodoidea. From an applied perspective, the identified AAV "fossils" provide novel capsid sequences for use in translational research and clinical applications.


Subject(s)
Dependovirus/classification , Dependovirus/genetics , Fossils , Germ Cells/virology , Marsupialia/virology , Animals , Computational Biology , Evolution, Molecular
2.
Mol Ther ; 20(3): 580-9, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22146342

ABSTRACT

Although restoration of dystrophin expression via exon skipping in both cardiac and skeletal muscle has been successfully demonstrated in the mdx mouse, restoration of cardiac dystrophin expression in large animal models of Duchenne muscular dystrophy (DMD) has proven to be a challenge. In large animals, investigators have focused on using intravenous injection of antisense oligonucleotides (AO) to mediate exon skipping. In this study, we sought to optimize restoration of cardiac dystrophin expression in the golden retriever muscular dystrophy (GRMD) model using percutaneous transendocardial delivery of recombinant AAV6 (rAAV6) to deliver a modified U7 small nuclear RNA (snRNA) carrying antisense sequence to target the exon splicing enhancers of exons 6 and 8 and correct the disrupted reading frame. We demonstrate restoration of cardiac dystrophin expression at 13 months confirmed by reverse transcription-PCR (RT-PCR) and immunoblot as well as membrane localization by immunohistochemistry. This was accompanied by improved cardiac function as assessed by cardiac magnetic resonance imaging (MRI). Percutaneous transendocardial delivery of rAAV6 expressing a modified U7 exon skipping construct is a safe, effective method for restoration of dystrophin expression and improvement of cardiac function in the GRMD canine and may be easily translatable to human DMD patients.


Subject(s)
Alternative Splicing , Dependovirus/genetics , Dystrophin/genetics , Genetic Vectors/genetics , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/therapy , Animals , Cell Line , Disease Models, Animal , Dogs , Dystrophin/metabolism , Echocardiography , Exons , Fibrosis , Gene Expression , Gene Order , Gene Transfer Techniques , Genetic Vectors/pharmacokinetics , Genome, Viral , Humans , Magnetic Resonance Imaging , Muscular Dystrophy, Duchenne/diagnosis , Myocardium/pathology , RNA, Messenger/metabolism
3.
Hum Gene Ther ; 22(8): 1021-30, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21381980

ABSTRACT

The large amounts of recombinant adeno-associated virus (rAAV) vector needed for clinical trials and eventual commercialization require robust, economical, reproducible, and scalable production processes compatible with current good manufacturing practice. rAAV produced using baculovirus and insect cells satisfies these conditions; however, recovering rAAV particles from 200-liter bioreactors is more complicated than bench-scale vector preparations. Using a variety of processing media, we developed a reliable and routine downstream procedure for rAAV production that is scalable from 0.02- to 200-liter cultures. To facilitate the upstream process, we adapted the titerless infected-cell preservation and scale-up process for rAAV production. Single-use aliquots of cryopreserved baculovirus-infected insect cells (BIIC) are thawed and added to the suspension culture to achieve the desired ratio of BIIC to rAAV-producer cells. By using conditions established with small-scale cultures, rAAV was produced in larger volume cultures. Strikingly consistent rAAV yields were attained in cultures ranging from 10 liters to 200 liters. Based on the final yield, each cell produced 18,000 ± 6,800 particles of purified rAAV in 10-, 20-, 100-, and 200-liter cultures. Thus, with an average cell density of 4.32 × 10(6) cells/ml, ≥ 10(16) purified rAAV particles are produced from 100 to 200 liters. The downstream process resulted in about 20% recovery estimated from comparing the quantities of capsid protein antigen in the crude bioreactor material and in the final, purified product. The ease and reproducibility of rAAV production in 200-liter bioreactors suggest that the limit has not been reached, and 500-liter productions are planned.


Subject(s)
Bioreactors , Dependovirus/genetics , Animals , Baculoviridae , Cell Count , Cell Culture Techniques , Cell Line , Genetic Vectors , Invertebrates , Reproducibility of Results
4.
J Neurosci Res ; 88(12): 2669-81, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20544825

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disease characterized by progressive degeneration of nigrostriatal dopaminergic (DA) neurons. The therapeutic potential of glial cell line-derived neurotrophic factor (GDNF), the most potent neurotrophic factor for DA neurons, has been demonstrated in many experimental models of PD. However, chronic delivery of GDNF to DA neurons in the brain remains an unmet challenge. Here, we report the effects of GDNF-releasing Notch-induced human bone marrow-derived mesenchymal stem cells (MSC) grafted into striatum of the 6-hydroxydopamine (6-OHDA) progressively lesioned rat model of PD. Human MSC, obtained from bone marrow aspirates of young, healthy adult volunteers, were transiently transfected with the intracellular domain of the Notch1 gene (NICD) to generate SB623 cells. SB623 cells expressing GDNF and/or humanized Renilla green fluorescent protein (hrGFP) following lentiviral transduction or nontransduced cells were stereotaxically placed into rat striatum 1 week after a unilateral partial 6-OHDA striatal lesion. At 4 weeks, rats that had received GDNF-transduced SB623 cells had significantly decreased amphetamine-induced rotation compared with control rats, although this effect was not observed in rats that received GFP-transduced or nontransduced SB623 cells. At 5 weeks, rejuvenated tyrosine hydroxylase-immunoreactive (TH-IR) fibers that appeared to be host DA axons were observed in and around grafts. This effect was more prominent in rats that received GDNF-secreting cells and was not observed in controls. These observations suggest that human bone-marrow derived MSC, genetically modified to secrete GDNF, hold potential as an allogeneic or autologous stem cell therapy for PD.


Subject(s)
Bone Marrow Transplantation/methods , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , Parkinsonian Disorders/pathology , Parkinsonian Disorders/therapy , Recovery of Function/physiology , Adult , Animals , Cell Differentiation/genetics , Cell Line , Disease Models, Animal , Genetic Engineering/methods , Glial Cell Line-Derived Neurotrophic Factor/genetics , Glial Cell Line-Derived Neurotrophic Factor/physiology , Graft Survival/physiology , Humans , Male , Nerve Regeneration/physiology , Parkinsonian Disorders/physiopathology , Rats , Rats, Inbred F344 , Transplantation, Autologous , Transplantation, Heterologous/methods , Transplantation, Homologous
5.
Cell Transplant ; 18(7): 801-14, 2009.
Article in English | MEDLINE | ID: mdl-19796495

ABSTRACT

Parkinson's disease (PD) is a common neurodegenerative disease characterized by the selective loss of dopaminergic (DA) neurons in the midbrain. Various types of stem cells that have potential to differentiate into DA neurons are being investigated as cellular therapies for PD. Stem cells also secrete growth factors and therefore also may have therapeutic effects in promoting the health of diseased DA neurons in the PD brain. To address this possibility in an experimental model of PD, bone marrow-derived neuroprogenitor-like cells were generated from bone marrow procured from healthy human adult volunteers and their potential to elicit recovery of damaged DA axons was studied in a partial lesion rat model of PD. Following collection of bone marrow, mesenchymal stem cells (MSC) were isolated and then genetically modified to create SB623 cells by transient transfection with the intracellular domain of the Notch1 gene (NICD), a modification that upregulates expression of certain neuroprogenitor markers. Ten deposits of 0.5 microl of SB623 cell suspension adjusted from 6,000 to 21,000 cells/microl in PBS or PBS alone were stereotaxically placed in the striatum 1 week after the nigrostriatal projection had been partially lesioned in adult F344 rats by injection of 6-hydroxydopamine (6-OHDA) into the striatum. At 3 weeks, a small number of grafted SB623 cells survived in the lesioned striatum as visualized by expression of the human specific nuclear matrix protein (hNuMA). In rats that received SB623 cells, but not in control rats, dense tyrosine hydroxylase immunoreactive (TH-ir) fibers were observed around the grafts. These fibers appeared to be rejuvenated host DA axons because no TH-ir in soma of surviving SB623 cells or coexpression of TH and hNuMA-ir were observed. In addition, dense serotonin immunoreactive (5-HT-ir) fibers were observed around grafted SB623 cells and these fibers also appeared to be of the host origin. Also, in some SB623 grafted rats that were sacrificed within 2 h of dl-amphetamine injection, hot spots of c-Fos-positive nuclei that coincided with rejuvenated dense TH fibers around the grafted SB623 cells were observed, suggesting increased availability of DA in these locations. Our observations suggest that NICD-transfected MSC hold potential as a readily available autologous or allogenic cellular therapy for ameliorating the degeneration of DA and 5-HT neurons in PD patients.


Subject(s)
Dopamine , Mesenchymal Stem Cell Transplantation , Nerve Degeneration/therapy , Neurons/physiology , Parkinsonian Disorders/therapy , Amphetamine/metabolism , Amphetamine/pharmacology , Animals , Bone Marrow Cells/cytology , Cell Communication , Cell Line , Corpus Striatum/metabolism , Corpus Striatum/pathology , Disease Models, Animal , Humans , Male , Mesencephalon/metabolism , Mesencephalon/pathology , Neostriatum/cytology , Nerve Fibers/metabolism , Neurons/cytology , Parkinsonian Disorders/pathology , Proto-Oncogene Proteins c-fos/metabolism , Rats , Rats, Inbred F344 , Serotonin/metabolism , Substantia Nigra/metabolism , Substantia Nigra/pathology , Transfection , Tyrosine 3-Monooxygenase/metabolism
6.
Hum Gene Ther ; 20(8): 807-17, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19604040

ABSTRACT

Establishing pharmacological parameters, such as efficacy, routes of administration, and toxicity, for recombinant adeno-associated virus (rAAV) vectors is a prerequisite for gaining acceptance for clinical applications. In fact, even a therapeutic window, that is, the dose range between therapeutic efficacy and toxicity, has yet to be determined for rAAV in vivo. Multiphase clinical trials investigating the safety and efficacy of recombinant AAV-based therapeutics will require unprecedented vector production capacity to meet the needs of preclinical toxicology studies, and the progressive clinical protocol phases of safety/dose escalation (phase I), efficacy (phase II), and high-enrollment, multicenter evaluations (phase III). Methods of rAAV production capable of supporting such trials must be scalable, robust, and efficient. We have taken advantage of the ease of scalability of nonadherent cell culture techniques coupled with the inherent efficiency of viral infection to develop an rAAV production method based on recombinant baculovirus-mediated expression of AAV components in insect-derived suspension cells.


Subject(s)
Baculoviridae/genetics , Dependovirus/genetics , Genetic Techniques , Insecta/genetics , Insecta/virology , Animals , Genetic Vectors/genetics , Viral Proteins/metabolism
7.
Clin Vaccine Immunol ; 16(5): 597-604, 2009 May.
Article in English | MEDLINE | ID: mdl-19244471

ABSTRACT

Recently, molecular screening for pathogenic agents has identified a partial genome of a novel parvovirus, called human bocavirus (HBoV). The presence of this newly described parvovirus correlated with upper and lower respiratory tract infections in children. Lower respiratory tract infections are a leading cause of hospital admission in children, and the etiological agent has not been identified in up to 39% of these cases. Using baculovirus expression vectors (BEVs) and an insect cell system, we produced virus-like particles (VLPs) of HBoV. The engineered BEVs express the HBoV capsid proteins stoichiometrically from a single open reading frame. Three capsid proteins assemble into the VLP rather than two proteins predicted from the HBoV genome sequence. The denatured capsid proteins VP1, VP2, and VP3 resolve on silver-stained sodium dodecyl sulfate-polyacrylamide gels as three bands with apparent molecular masses of 72 kDa, 68 kDa, and 62 kDa, respectively. VP2 apparently initiates at a GCT codon (alanine) 273 nucleotides downstream from the VP1 start site and 114 nucleotides upstream from the VP3 initiation site. We characterized the stable capsids using physical, biochemical, and serological techniques. We found that the density of the VLP is 1.32 g/cm(3) and is consistent with an icosahedral symmetry with approximately a 25-nm diameter. Rabbit antiserum against the capsid of HBoV, which did not cross-react with adeno-associated virus type 2, was used to develop enzyme-linked immunosorbent assays (ELISAs) for anti-HBoV antibodies in human serum. Using ELISA, we tested 404 human serum samples and established a range of antibody titers in a large U.S. adult population sample.


Subject(s)
Antibodies, Viral/blood , Bocavirus/immunology , Parvoviridae Infections/epidemiology , Adolescent , Adult , Aged , Amino Acid Sequence , Animals , Antigens, Viral/genetics , Capsid Proteins/chemistry , Capsid Proteins/genetics , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Middle Aged , Molecular Sequence Data , Molecular Weight , Rabbits , Seroepidemiologic Studies , Serum/immunology , United States/epidemiology , Virosomes/genetics , Virosomes/ultrastructure , Young Adult
8.
J Med Chem ; 48(15): 4919-30, 2005 Jul 28.
Article in English | MEDLINE | ID: mdl-16033271

ABSTRACT

We previously reported that fatty alcohol phosphates (FAP) represent a minimal pharmacophore required to interact with lysophosphatidic acid (LPA) receptors. To improve the activity of the first-generation saturated FAP series, a structure-activity relationship (SAR) study was carried out that includes modifications to the headgroup and alkyl side chain of the FAP pharmacophore. A series of unsaturated (C(10)-C(18)) FAP, headgroup-modified hydrolytically stable saturated (C(10)-C(18)) alkyl phosphonates, and saturated and unsaturated (C(10)-C(18)) thiophosphate analogues were synthesized and evaluated for activity in RH7777 cells transfected with individual LPA(1)(-3) receptors, in PC-3 cells and in human platelets that endogenously express all three isoforms. In this series we identified several LPA(1)- and LPA(3)-selective antagonists with IC(50) values in the nanomolar range. Oleoyl-thiophosphate (15g) was shown to be a pan-agonist, whereas tetradecyl-phosphonate (16c) was identified as a pan-antagonist. These compounds were also tested for the ability to activate the transcription factor PPARgamma, an intracellular receptor for LPA, in CV1 cells transfected with the PPRE-Acox-Rluc reporter gene. All the FAP tested, along with the previously reported LPA GPCR antagonists dioctanoyl glycerol pyrophosphate (2), Ki16425 (6), and the agonist OMPT (3), were activators of PPARgamma. The pan-agonist oleoyl-thiophosphate (15g) and pan-antagonist tetradecyl-phosphonate (16c) mimicked LPA in inhibiting autotaxin, a secreted lysophospholipase D that produces LPA in biological fluids.


Subject(s)
Fatty Alcohols/chemical synthesis , Organophosphates/chemical synthesis , Organophosphonates/chemical synthesis , PPAR gamma/agonists , Phosphodiesterase Inhibitors/chemical synthesis , Receptors, Lysophosphatidic Acid/agonists , Receptors, Lysophosphatidic Acid/antagonists & inhibitors , Animals , Blood Platelets/drug effects , Blood Platelets/metabolism , Calcium/metabolism , Cell Line , Fatty Alcohols/chemistry , Fatty Alcohols/pharmacology , Humans , Hydrophobic and Hydrophilic Interactions , In Vitro Techniques , Ligands , Organophosphates/chemistry , Organophosphates/pharmacology , Organophosphonates/chemistry , Organophosphonates/pharmacology , Phosphodiesterase Inhibitors/chemistry , Phosphodiesterase Inhibitors/pharmacology , Phosphoric Diester Hydrolases/metabolism , Rats , Structure-Activity Relationship
9.
Mol Pharmacol ; 63(5): 1032-42, 2003 May.
Article in English | MEDLINE | ID: mdl-12695531

ABSTRACT

A more complete understanding of the physiological and pathological role of lysophosphatidic acid (LPA) requires receptor subtype-specific agonists and antagonists. Here, we report the synthesis and pharmacological characterization of fatty alcohol phosphates (FAP) containing saturated hydrocarbon chains from 4 to 22 carbons in length. Selection of FAP as the lead structure was based on computational modeling as a minimal structure that satisfies the two-point pharmacophore developed earlier for the interaction of LPA with its receptors. Decyl and dodecyl FAPs (FAP-10 and FAP-12) were specific agonists of LPA(2) (EC(50) = 3.7 +/- 0.2 microM and 700 +/- 22 nM, respectively), yet selective antagonists of LPA(3) (K(i) = 90 nM for FAP-12) and FAP-12 was a weak antagonist of LPA(1). Neither LPA(1) nor LPA(3) receptors were activated by FAPs; in contrast, LPA(2) was activated by FAPs with carbon chains between 10 and 14. Computational modeling was used to evaluate the interaction between individual FAPs (8 to 18) with LPA(2) by docking each compound in the LPA binding site. FAP-12 displayed the lowest docked energy, consistent with its lower observed EC(50). The inhibitory effect of FAP showed a strong hydrocarbon chain length dependence with C12 being optimum in the Xenopus laevis oocytes and in LPA(3)-expressing RH7777 cells. FAP-12 did not activate or interfere with several other G-protein-coupled receptors, including S1P-induced responses through S1P(1,2,3,5) receptors. These data suggest that FAPs are ligands of LPA receptors and that FAP-10 and FAP-12 are the first receptor subtype-specific agonists for LPA(2).


Subject(s)
Organophosphates/pharmacology , Receptors, Cell Surface/agonists , Receptors, G-Protein-Coupled , Animals , Cell Line , Humans , Oocytes/drug effects , Oocytes/metabolism , Organophosphates/chemical synthesis , Organophosphates/chemistry , Receptors, Cell Surface/metabolism , Receptors, Lysophosphatidic Acid , Xenopus laevis
10.
Biochim Biophys Acta ; 1582(1-3): 295-308, 2002 May 23.
Article in English | MEDLINE | ID: mdl-12069841

ABSTRACT

Ligand recognition by G protein-coupled receptors (GPCR), as well as substrate recognition by enzymes, almost always shows a preference for a naturally occurring enantiomer over the unnatural one. Recognition of lysophosphatidic acid (LPA) by its receptors is an exception, as both the natural L (R) and unnatural D (S) stereoisomers of LPA are equally active in bioassays. In contrast to the enantiomers of LPA, analogs of N-acyl-serine phosphoric acid (NASPA) and N-acyl-ethanolamine phosphoric acid (NAEPA), which contain a serine and an ethanolamine backbone, respectively, in place of glycerol, are recognized in a stereoselective manner. This stereoselective interaction may lead to the development of receptor subtype-selective antagonists. In the present study, we review the stereochemical aspects of LPA pharmacology and describe the chemical synthesis of pure LPA enantiomers together with their ligand-binding properties toward the LPA1, LPA2, and LPA3 receptors and their metabolism by lipid phosphate phosphatase 1 (LPP1). Finally, we evaluate the concept of stereopharmacology in developing novel ligands for LPA receptors.


Subject(s)
Lysophospholipids/metabolism , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/physiology , Receptors, G-Protein-Coupled , Animals , DNA Replication/drug effects , GTP-Binding Proteins/physiology , Humans , Lysophospholipids/chemistry , Lysophospholipids/pharmacology , Receptors, Cell Surface/metabolism , Receptors, Lysophosphatidic Acid , Stereoisomerism
11.
Biochim Biophys Acta ; 1582(1-3): 309-17, 2002 May 23.
Article in English | MEDLINE | ID: mdl-12069842

ABSTRACT

Recent characterization of lysophosphatidic acid (LPA) receptors has made possible studies elucidating the structure-activity relationships (SAR) for agonist activity at individual receptors. Additionally, the availability of these receptors has allowed the identification of antagonists of LPA-induced effects. Two receptor-subtype selective LPA receptor antagonists, one selective for the LPA1/EDG2 receptor (a benzyl-4-oxybenzyl N-acyl ethanolamide phosphate, NAEPA, derivative) and the other selective for the LPA3/EDG7 receptor (diacylglycerol pyrophosphate, DGPP, 8:0), have recently been reported. The receptor SAR for both agonists and antagonists are reviewed, and the molecular basis for the difference between agonism and antagonism as well as for receptor-subtype antagonist selectivity identified by molecular modeling is described. The implications of the newly available receptor-subtype selective antagonists are also discussed.


Subject(s)
Phospholipids/pharmacology , Receptors, Cell Surface/antagonists & inhibitors , Receptors, G-Protein-Coupled , Amino Acid Sequence , Animals , Binding Sites , Humans , Ligands , Models, Molecular , Molecular Sequence Data , Phospholipids/chemistry , Protein Conformation , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/drug effects , Receptors, Lysophosphatidic Acid , Sequence Alignment , Sequence Homology, Amino Acid
12.
J Biol Chem ; 277(24): 21197-206, 2002 Jun 14.
Article in English | MEDLINE | ID: mdl-11929870

ABSTRACT

Lysophosphatidic acid (LPA) and sphingosine 1-phosphate (Sph1P) production was examined in vitro under conditions that simulated blood clotting. Several approaches were utilized to elucidate the metabolic pathways. 1) Platelet phospholipids were labeled using [32P]orthophosphate, and the production of [32P]Sph1P and LPA was examined. Thrombin stimulation of platelets resulted in rapid secretion of Sph1P stored within the platelet. In contrast, LPA was neither stored within nor secreted from platelets. Nonetheless, extracellular levels of LPA gradually increased following stimulation. 2) Stable-isotope dilution mass spectrometry was used to quantify the molecular species of LPA generated from platelets in vitro. Only 10% of the LPA generated following thrombin stimulation was associated with platelets, the remaining 90% was contained within the extracellular medium. The acyl composition of LPA produced by platelets differed depending on the presence or absence of plasma in the incubation. 3) The fate of exogenously added fluorescent phospholipid analogs was determined. Incubation of [(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]dodecanoyl-(NBD)-labeled phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine with the supernatant fractions from thrombin-stimulated platelets yielded no LPA production. However, these lipids were converted to the corresponding lysolipids by released PLA1 and PLA2 activities. When incubated with plasma or serum the NBD-labeled lysophospholipids were readily converted to LPA. Inhibitors of lysophospholipase D and the biological activity of LPA were detected in plasma. These results suggest that the bulk of LPA produced through platelet activation results from the sequential cleavage of phospholipids to lysophospholipids by released phospholipases A1 and A2 and then to LPA by plasma lysophospholipase D.


Subject(s)
Lysophospholipids/metabolism , Platelet Activation , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Animals , Biological Assay , Blood Coagulation , Blood Platelets/metabolism , Calcium/metabolism , Chlorine/metabolism , Chromatography, Liquid , Chromatography, Thin Layer , Humans , Lipid Metabolism , Lipids/chemistry , Lipopolysaccharides/metabolism , Lysophospholipids/blood , Mass Spectrometry , Models, Biological , Oocytes/metabolism , Phospholipases A/metabolism , Phospholipases A1 , Phospholipases A2 , Phosphoric Diester Hydrolases/blood , Thrombin/metabolism , Time Factors , Xenopus
SELECTION OF CITATIONS
SEARCH DETAIL
...