Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 60(17): 12709-12713, 2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34410110

ABSTRACT

Thanks to a homemade dynamic vacuum system, fully crystallized VO2 (M) is successfully synthesized in a merged step of vanadyl ethylene glycolate (VEG) decomposition and crystallization of VO2 at high temperatures (>500 °C). During the whole process, vanadium valence (+4) is well maintained, and VEG microstructure plays an important role in the end-product size and shape. Finally, the suggested route appears well suitable for the mass production of VO2 nanoparticles.

2.
Dalton Trans ; 48(9): 3080-3089, 2019 Feb 26.
Article in English | MEDLINE | ID: mdl-30785141

ABSTRACT

A low-cost and facile method to synthesize highly crystallized VO2 (M1) particles is proposed, using carbon black as the reducing agent mixed with V2O5 nanopowders comparing two types of vacuum systems for the thermal activation. In a sealed vacuum system, CO gas is generated in the first reductive step, and continues to reduce the new born VO2, until all the V (+4) is reduced to V (+3), resulting in V2O3 formation at 1000 °C. In contrast, in a dynamic vacuum system, CO gas is ejected through pumping as soon as it is generated, leading to the formation of pure VO2 (M1) at high temperatures (i.e. in the range 700 °C ≤ T ≤ 1000 °C). The evolution of the carbon content, determined by CHNS, of each sample versus the synthesis conditions, namely temperature and type of vacuum system, confirms that the transformation of V (+5) into V (+4) or V (+3) can be controlled. The characterization of the morphologies and crystal structures of two synthesized VO2 (M1) at 700 °C and 1000 °C shows the possibility to tune the crystallite size from 1.8 to more than 5 µm, with a uniform size distribution and highly crystallized powders. High purity VO2 (M1) leads to strong physical properties illustrated by a high latent energy (∼55 J g-1) during the phase transition obtained from DSC as well as high resistivity changes. In addition, with this method, dopants such as Ti4+ or Al3+ can be successfully introduced into VO2 (M1) thanks to the preparation of Al or Ti-doped nano-V2O5 by co-precipitation in polyol medium before carbon-reduction.

3.
Inorg Chem ; 57(15): 8857-8865, 2018 Aug 06.
Article in English | MEDLINE | ID: mdl-30010334

ABSTRACT

Highly crystallized monoclinic vanadium dioxide, VO2 (M), is successfully synthesized by a two-step thermal treatment: thermolysis of vanadyl ethylene glycolate (VEG) and postannealing of the poorly crystallized VO2 powder. In the first thermolysis step, the decomposition of VEG at 300 °C is investigated by X-ray diffraction and scanning electron microscopy (SEM). A poorly crystallized VO2 powder is obtained at a strict time of 3 min, and it is found that the residual carbon content in the powder played a critical role in the post crystallization of VO2 (M). After postannealing at 500 and 700 °C in an oxygen-free atmosphere, VO2 particles of various morphologies, of which the crystallite size increases with increasing temperature, are observed by SEM and transmission electron microscopy. The weight percent of crystalline VO2, calculated using the Fullprof program, increases from 44% to 79% and 100% after postannealing. The improved crystallinity leads to an improvement in metal-insulator transition behaviors demonstrated by sharper and more intense differential scanning calorimetry peaks. Moreover, V2O3 and V2O5 with novel and particular microstructures are also successfully prepared with a similar two-step method using postannealing treatment under reductive or oxidizing atmospheres, respectively.

4.
Opt Lett ; 38(20): 4146-9, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-24321945

ABSTRACT

We present, to the best of our knowledge, the first laser demonstration of an Yb-doped Gd(2)O(3) cubic crystal. This crystal was obtained by the flux method using an original borate-based solvent, which was particularly well suited to the growth of rare earth sesquioxide crystals at half the working temperature of classical growth techniques. This flux method is a very interesting alternative for the production of laser sesquioxide crystals, not only because it provides access to new matrices of the cubic polymorph, but also because it permits high Yb(3+)-doping levels for these crystals. The first laser results of two highly Yb(3+)-doped sesquioxides, namely Gd(2)O(3) and Y(2)O(3), grown by this flux method are presented here, including the Ti:sapphire and diode pumping configurations. Laser efficiencies and emission spectra for these two crystals were studied and compared.

SELECTION OF CITATIONS
SEARCH DETAIL
...