Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 10309, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33986302

ABSTRACT

Intracellular tau inclusions are a pathological hallmark of Alzheimer's disease, progressive supranuclear palsy, corticobasal degeneration and other sporadic neurodegenerative tauopathies. Recent in vitro and in vivo studies have shown that tau aggregates may spread to neighbouring cells and functionally connected brain regions, where they can seed further tau aggregation. This process is referred to as tau propagation. Here we describe an ex vivo system using organotypic hippocampal slice cultures (OHCs) which recapitulates aspects of this phenomenon. OHCs are explants of hippocampal tissue which may be maintained in culture for months. They maintain their synaptic connections and multicellular 3D architecture whilst also permitting direct control of the environment and direct access for various analysis types. We inoculated OHCs prepared from P301S mouse pups with brain homogenate from terminally ill P301S mice and then examined the slices for viability and the production and localization of insoluble phosphorylated tau. We show that following seeding, phosphorylated insoluble tau accumulate in a time and concentration dependent manner within OHCs. Furthermore, we show the ability of the conformation dependent anti-tau antibody, MC1, to compromise tau accrual in OHCs, thus showcasing the potential of this therapeutic approach and the utility of OHCs as an ex vivo model system for assessing such therapeutics.


Subject(s)
Hippocampus/pathology , Tauopathies/pathology , Alzheimer Disease/pathology , Animals , Hippocampus/metabolism , In Vitro Techniques , Mice , Mice, Transgenic , Phosphorylation
2.
Sci Rep ; 7(1): 14498, 2017 11 03.
Article in English | MEDLINE | ID: mdl-29101377

ABSTRACT

Loss of synapses or alteration of synaptic activity is associated with cognitive impairment observed in a number of psychiatric and neurological disorders, such as schizophrenia and Alzheimer's disease. Therefore successful development of in vitro methods that can investigate synaptic function in a high-throughput format could be highly impactful for neuroscience drug discovery. We present here the development, characterisation and validation of a novel high-throughput in vitro model for assessing neuronal function and synaptic transmission in primary rodent neurons. The novelty of our approach resides in the combination of the electrical field stimulation (EFS) with data acquisition in spatially separated areas of an interconnected neuronal network. We integrated our methodology with state of the art drug discovery instrumentation (FLIPR Tetra) and used selective tool compounds to perform a systematic pharmacological validation of the model. We investigated pharmacological modulators targeting pre- and post-synaptic receptors (AMPA, NMDA, GABA-A, mGluR2/3 receptors and Nav, Cav voltage-gated ion channels) and demonstrated the ability of our model to discriminate and measure synaptic transmission in cultured neuronal networks. Application of the model described here as an unbiased phenotypic screening approach will help with our long term goals of discovering novel therapeutic strategies for treating neurological disorders.


Subject(s)
Drug Discovery/instrumentation , Neurons/physiology , Synapses/physiology , Synaptic Transmission/physiology , Voltage-Sensitive Dye Imaging , Animals , Calcium/metabolism , Cations, Divalent/metabolism , Cells, Cultured , Cerebral Cortex/cytology , Cerebral Cortex/drug effects , Cerebral Cortex/physiology , Electric Stimulation , Neurons/cytology , Neurons/drug effects , Neurotransmitter Agents/pharmacology , Primary Cell Culture , Rats, Sprague-Dawley , Synapses/drug effects , Synaptic Transmission/drug effects , Voltage-Sensitive Dye Imaging/instrumentation , Voltage-Sensitive Dye Imaging/methods
3.
Biochemistry ; 51(42): 8338-52, 2012 Oct 23.
Article in English | MEDLINE | ID: mdl-23025847

ABSTRACT

Oligomeric forms of ß-amyloid (Aß) have potent neurotoxic activity and are the primary cause of neuronal injury and cell death in Alzheimer's disease (AD). Compounds that perturb oligomer formation or structure may therefore be therapeutic for AD. We previously reported that d-[(chGly)-(Tyr)-(chGly)-(chGly)-(mLeu)]-NH(2) (SEN304) is able to inhibit Aß aggregation and toxicity, shown primarily by thioflavin T fluorescence and MTT (Kokkoni, N. et al. (2006) N-Methylated peptide inhibitors of ß-amyloid aggregation and toxicity. Optimisation of inhibitor structure. Biochemistry 45, 9906-9918). Here we extensively characterize how SEN304 affects Aß(1-42) aggregation and toxicity, using biophysical assays (thioflavin T, circular dichroism, SDS-PAGE, size exclusion chromatography, surface plasmon resonance, traveling wave ion mobility mass spectrometry, electron microscopy, ELISA), toxicity assays in cell culture (MTT and lactate dehydrogenase in human SH-SHY5Y cells, mouse neuronal cell death and synaptophysin) and long-term potentiation in a rat hippocampal brain slice. These data, with dose response curves, show that SEN304 is a powerful inhibitor of Aß(1-42) toxicity, particularly effective at preventing Aß inhibition of long-term potentiation. It can bind directly to Aß(1-42), delay ß-sheet formation and promote aggregation of toxic oligomers into a nontoxic form, with a different morphology that cannot bind thioflavin T. SEN304 appears to work by inducing aggregation, and hence removal, of Aß oligomers. It is therefore a promising lead compound for Alzheimer's disease.


Subject(s)
Amyloid beta-Peptides/antagonists & inhibitors , Oligopeptides/pharmacology , Peptide Fragments/antagonists & inhibitors , Protein Multimerization/drug effects , Alzheimer Disease , Animals , Benzothiazoles , Cell Survival , Circular Dichroism , Humans , Long-Term Potentiation/drug effects , Male , Mice , Neurons/drug effects , Protein Structure, Quaternary , Rats , Surface Plasmon Resonance , Thiazoles , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...