Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 65(4): 3388-3403, 2022 02 24.
Article in English | MEDLINE | ID: mdl-35133171

ABSTRACT

Histone acetylation is a prominent epigenetic modification linked to the memory loss symptoms associated with neurodegenerative disease. The use of existing histone deacetylase inhibitor (HDACi) drugs for treatment is precluded by their weak blood-brain barrier (BBB) permeability and undesirable toxicity. Here, we address these shortcomings by developing a new class of disulfide-based compounds, inspired by the scaffold of the FDA-approved HDACi romidepsin (FK288). Our findings indicate that our novel compound MJM-1 increases the overall level of histone 3 (H3) acetylation in a prostate cancer cell line. In mice, MJM-1 injected intraperitoneally (i.p.) crossed the BBB and could be detected in the hippocampus, a brain region that mediates memory. Consistent with this finding, we found that the post-training i.p. administration of MJM-1 enhanced hippocampus-dependent spatial memory consolidation in male mice. Therefore, MJM-1 represents a potential lead for further optimization as a therapeutic strategy for ameliorating cognitive deficits in aging and neurodegenerative diseases.


Subject(s)
Brain/metabolism , Histone Deacetylase Inhibitors/chemical synthesis , Spatial Memory/drug effects , Animals , Cell Line, Tumor , Histone Deacetylase Inhibitors/pharmacokinetics , Histone Deacetylase Inhibitors/pharmacology , Mice , Mice, Inbred BALB C
2.
SLAS Discov ; 25(10): 1162-1170, 2020 12.
Article in English | MEDLINE | ID: mdl-32981460

ABSTRACT

Small molecules that bind the SARS-CoV-2 nonstructural protein 3 Mac1 domain in place of ADP-ribose could be useful as molecular probes or scaffolds for COVID-19 antiviral drug discovery because Mac1 has been linked to the ability of coronaviruses to evade cellular detection. A high-throughput assay based on differential scanning fluorimetry (DSF) was therefore optimized and used to identify possible Mac1 ligands in small libraries of drugs and drug-like compounds. Numerous promising compounds included nucleotides, steroids, ß-lactams, and benzimidazoles. The main drawback to this approach was that a high percentage of compounds in some libraries were found to influence the observed Mac1 melting temperature. To prioritize DSF screening hits, the shapes of the observed melting curves and initial assay fluorescence were examined, and the results were compared with virtual screens performed using AutoDock Vina. The molecular basis for alternate ligand binding was also examined by determining a structure of one of the hits, cyclic adenosine monophosphate, with atomic resolution.


Subject(s)
Coronavirus Papain-Like Proteases/chemistry , Coronavirus Papain-Like Proteases/metabolism , High-Throughput Screening Assays/methods , SARS-CoV-2/chemistry , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Binding Sites , Coronavirus Papain-Like Proteases/genetics , Cyclic AMP/chemistry , Cyclic AMP/metabolism , Ligands , Models, Molecular , Molecular Docking Simulation , Protein Conformation , Protein Domains , SARS-CoV-2/drug effects
3.
bioRxiv ; 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32676591

ABSTRACT

Small molecules that bind the SARS-CoV-2 non-structural protein 3 Mac1 domain in place of ADP-ribose could be useful as molecular probes or scaffolds for COVID-19 antiviral drug discovery because Mac1 has been linked to coronavirus' ability to evade cellular detection. A high-throughput assay based on differential scanning fluorimetry (DSF) was therefore optimized and used to identify possible Mac1 ligands in small libraries of drugs and drug-like compounds. Numerous promising compounds included nucleotides, steroids, beta-lactams, and benzimidazoles. The main drawback to this approach was that a high percentage of compounds in some libraries were found to influence the observed Mac1 melting temperature. To prioritize DSF screening hits, the shapes of the observed melting curves and initial assay fluorescence were examined, and the results were compared with virtual screens performed using Autodock VINA. The molecular basis for alternate ligand binding was also examined by determining a structure of one of the hits, cyclic adenosine monophosphate, with atomic resolution.

4.
Biochemistry ; 59(28): 2608-2615, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32578982

ABSTRACT

The virus that causes COVID-19, SARS-CoV-2, has a large RNA genome that encodes numerous proteins that might be targets for antiviral drugs. Some of these proteins, such as the RNA-dependent RNA polymerase, helicase, and main protease, are well conserved between SARS-CoV-2 and the original SARS virus, but several others are not. This study examines one of the proteins encoded by SARS-CoV-2 that is most different, a macrodomain of nonstructural protein 3 (nsp3). Although 26% of the amino acids in this SARS-CoV-2 macrodomain differ from those observed in other coronaviruses, biochemical and structural data reveal that the protein retains the ability to bind ADP-ribose, which is an important characteristic of beta coronaviruses and a potential therapeutic target.


Subject(s)
Betacoronavirus/chemistry , Viral Nonstructural Proteins/chemistry , Adenosine Diphosphate Ribose/metabolism , COVID-19 , Coronavirus/chemistry , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Coronavirus Papain-Like Proteases , Crystallography, X-Ray , Drug Delivery Systems , Humans , Models, Molecular , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Protein Domains , SARS-CoV-2 , Thermodynamics , Viral Nonstructural Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...