Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Autophagy ; : 1-17, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38615686

ABSTRACT

Crohn disease (CD) is an inflammatory bowel disease whose pathogenesis involves inappropriate immune responses toward gut microbiota on genetically predisposed backgrounds. Notably, CD is associated with single-nucleotide polymorphisms affecting several genes involved in macroautophagy/autophagy, the catabolic process that ensures the degradation and recycling of cytosolic components and microorganisms. In a clinical translation perspective, monitoring the autophagic activity of CD patients will require some knowledge on the intrinsic functional status of autophagy. Here, we focused on monocyte-derived dendritic cells (DCs) to characterize the intrinsic quantitative features of the autophagy flux. Starting with DCs from healthy donors, we documented a reprogramming of the steady state flux during the transition from the immature to mature status: both the autophagosome pool size and the flux were diminished at the mature stage while the autophagosome turnover remained stable. At the cohort level, DCs from CD patients were comparable to control in term of autophagy flux reprogramming capacity. However, the homozygous presence of ATG16L1 rs2241880 A>G (T300A) and ULK1 rs12303764 (G/T) polymorphisms abolished the capacity of CD patient DCs to reprogram their autophagy flux during maturation. This effect was not seen in the case of CD patients heterozygous for these polymorphisms, revealing a gene dose dependency effect. In contrast, the NOD2 rs2066844 c.2104C>T (R702W) polymorphism did not alter the flux reprogramming capacity of DCs. The data, opening new clinical translation perspectives, indicate that polymorphisms affecting autophagy-related genes can differentially influence the capacity of DCs to reprogram their steady state autophagy flux when exposed to proinflammatory challenges.Abbreviation: BAFA1: bafilomycin A1, CD: Crohn disease; DC: dendritic cells; HD: healthy donor; iDCs: immature DCs; IL: interleukin; J: autophagosome flux; LPS: lipopolysaccharide; MHC: major histocompatibility complex; nA: autophagosome pool size; SNPs: single-nucleotide polymorphisms; PCA: principal component analysis; TLR: toll like receptor; τ: transition time; TNF: tumor necrosis factor.

2.
Nat Commun ; 14(1): 7922, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38040679

ABSTRACT

Invariant natural killer T (NKT) cell subsets are defined based on their cytokine-production profiles and transcription factors. Their distribution is different in C57BL/6 (B6) and BALB/c mice, with a bias for NKT1 and NKT2/NKT17 subsets, respectively. Here, we show that the non-classical class I-like major histocompatibility complex CD1 molecules CD1d2, expressed in BALB/c and not in B6 mice, could not account for this difference. We find however that NKT cell subset distribution is intrinsic to bone marrow derived NKT cells, regardless of syngeneic CD1d-ligand recognition, and that multiple intrinsic factors are likely involved. Finally, we find that CD1d expression levels in combination with T cell antigen receptor signal strength could also influence NKT cell distribution and function. Overall, this study indicates that CD1d-mediated TCR signals and other intrinsic signals integrate to influence strain-specific NKT cell differentiation programs and subset distributions.


Subject(s)
Natural Killer T-Cells , Animals , Mice , Antigens, CD1/metabolism , Antigens, CD1d/metabolism , Cell Differentiation , Killer Cells, Natural , Mice, Inbred C57BL , Receptors, Antigen, T-Cell/metabolism , T-Lymphocyte Subsets
5.
Autophagy ; 19(3): 858-872, 2023 03.
Article in English | MEDLINE | ID: mdl-35900944

ABSTRACT

Although it is admitted that secondary infection can complicate viral diseases, the consequences of viral infection on cell susceptibility to other infections remain underexplored at the cellular level. We though to examine whether the sustained macroautophagy/autophagy associated with measles virus (MeV) infection could help cells oppose invasion by Salmonella Typhimurium, a bacterium sensitive to autophagic restriction. We report here the unexpected finding that Salmonella markedly replicated in MeV-infected cultures due to selective growth within multinucleated cells. Hyper-replicating Salmonella localized outside of LAMP1-positive compartments to an extent that equaled that of the predominantly cytosolic sifA mutant Salmonella. Bacteria were subjected to effective ubiquitination but failed to be targeted by LC3 despite an ongoing productive autophagy. Such a phenotype could not be further aggravated upon silencing of the selective autophagy regulator TBK1 or core autophagy factors ATG5 or ATG7. MeV infection also conditioned primary human epithelial cells for augmented Salmonella replication. The analysis of selective autophagy receptors able to target Salmonella revealed that a lowered expression level of SQSTM1/p62 and TAX1BP1/T6BP autophagy receptors prevented effective anti-Salmonella autophagy in MeV-induced syncytia. Conversely, as SQSTM1/p62 is promoting the cytosolic growth of Shigella flexneri, MeV infection led to reduced Shigella replication. The results indicate that the rarefaction of dedicated autophagy receptors associated with MeV infection differentially affects the outcome of bacterial coinfection depending on the nature of the functional relationship between bacteria and such receptors. Thus, virus-imposed reconfiguration of the autophagy machinery can be instrumental in determining the fate of bacterial coinfection.Abbreviations: ACTB/ß-ACTIN: actin beta; ATG: autophagy related; BAFA1: bafilomycin A1; CFU: colony-forming units; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; FIP: fusion inhibitory peptide; GFP: green fluorescent protein; LAMP1: lysosomal associated membrane protein 1; LIR: MAP1LC3/LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MeV: measles virus; MOI: multiplicity of infection; OPTN: optineurin; PHH: primary human hepatocyte; SCV: Salmonella-containing vacuoles; SQSTM1/p62: sequestosome 1; S. flexneri: Shigella flexneri; S. Typhimurium: Salmonella enterica serovar Typhimurium; TAX1BP1/T6BP: Tax1 binding protein 1; TBK1: TANK binding kinase 1.


Subject(s)
Autophagy , Coinfection , Humans , Autophagy/genetics , Sequestosome-1 Protein/metabolism , Measles virus/metabolism , Salmonella typhimurium , Carrier Proteins
6.
Front Immunol ; 13: 864353, 2022.
Article in English | MEDLINE | ID: mdl-36405740

ABSTRACT

Background and aims: We aimed to analyze circulating CD4+ T cell subsets and cytokines during the course of Crohn's disease (CD). Methods and results: CD4+ T cell subsets, ultrasensitive C-reactive protein (usCRP), and various serum cytokines (IL-6, IL-8, IL-10, IL-13, IL-17A, IL-23, TNFα, IFNγ, and TGFß) were prospectively monitored every 3 months for 1 year, using multicolor flow cytometry and an ultrasensitive Erenna method in CD patients in remission at inclusion. Relapse occurred in 35 out of the 113 consecutive patients (31%). For patients in remission within 4 months prior to relapse and at the time of relapse, there was no significant difference in Th1, Th17, Treg, and double-positive CD4+ T cell subsets co-expressing either IFNγ and FOXP3, IL-17A and FOXP3, or IFNγ and IL-17A. On the contrary, in patients who remained in remission, the mean frequency and number of double-positive IL-17A+FOXP3+ CD4+ T cells and the level of usCRP were significantly higher (p ≤ 0.01) 1 to 4 months prior to relapse. At the time of relapse, only the IL-6 and usCRP levels were significantly higher (p ≤ 0.001) compared with those patients in remission. On multivariate analysis, a high number of double-positive IL-17A+FOXP3+ CD4+ T cells (≥1.4 cells/mm3) and elevated serum usCRP (≥3.44 mg/L) were two independent factors associated with risk of relapse. Conclusions: Detection of circulating double-positive FOXP3+IL-17A+ CD4+ T cell subsets supports that T cell plasticity may reflect the inflammatory context of Crohn's disease. Whether this subset contributes to the pathogenesis of CD relapse needs further studies.


Subject(s)
Crohn Disease , Interleukin-17 , Humans , Interleukin-17/metabolism , Crohn Disease/pathology , Cytokines/metabolism , Interleukin-6/metabolism , T-Lymphocyte Subsets/metabolism , Th17 Cells/metabolism , Forkhead Transcription Factors/metabolism , Recurrence
7.
Viruses ; 14(10)2022 10 11.
Article in English | MEDLINE | ID: mdl-36298785

ABSTRACT

Dugbe orthonairovirus (DUGV) is a tick-borne arbovirus within the order Bunyavirales. Although displaying mild pathogenic potential, DUGV is genetically related to the Crimean-Congo hemorrhagic fever virus (CCHFV), another orthonairovirus that causes severe liver dysfunction and hemorrhagic fever with a high mortality rate in humans. As we previously observed that CCHFV infection could massively recruit and lipidate MAP1LC3 (LC3), a core factor involved in the autophagic degradation of cytosolic components, we asked whether DUGV infection also substantially impacts the autophagy machinery in epithelial cells. We observed that DUGV infection does impose LC3 lipidation in cultured hepatocytes. DUGV infection also caused an upregulation of the MAP1LC3 and SQSTM1/p62 transcript levels, which were, however, more moderate than those seen during CCHFV infection. In contrast, unlike during CCHFV infection, the modulation of core autophagy factors could influence both LC3 lipidation and viral particle production: the silencing of ATG5 and/or ATG7 diminished the induction of LC3 lipidation and slightly upregulated the level of infectious DUGV particle production. Overall, the results are compatible with the notion that in epithelial cells infected with DUGV in vitro, the autophagy machinery may be recruited to exert a certain level of restriction on viral replication. Thus, the relationship between DUGV infection and autophagy in epithelial cells appears to present both similarities and distinctions with that seen during CCHFV infection.


Subject(s)
Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Nairobi sheep disease virus , Humans , Sequestosome-1 Protein , Hemorrhagic Fever Virus, Crimean-Congo/physiology , Autophagy , Proteins , Hepatocytes
8.
Trends Microbiol ; 30(3): 201-202, 2022 03.
Article in English | MEDLINE | ID: mdl-35012862

ABSTRACT

Autophagy can restrict virus replication so efficiently that viruses have evolved means to avoid or oppose the autophagic response. Two recent studies (Ames et al. and Martin-Sancho et al.) have revealed that the autophagy receptor optineurin restricts HSV-1 replication in neurons and have elucidated how the M2 protein of IAV inhibits the completion of autophagy.


Subject(s)
Herpesvirus 1, Human , Viruses , Autophagy , Herpesvirus 1, Human/physiology , Virus Replication/physiology
9.
Autophagy Rep ; 1(1): 438-515, 2022.
Article in English | MEDLINE | ID: mdl-37425656

ABSTRACT

Autophagy is a highly conserved process that utilizes lysosomes to selectively degrade a variety of intracellular cargo, thus providing quality control over cellular components and maintaining cellular regulatory functions. Autophagy is triggered by multiple stimuli ranging from nutrient starvation to microbial infection. Autophagy extensively shapes and modulates the inflammatory response, the concerted action of immune cells, and secreted mediators aimed to eradicate a microbial infection or to heal sterile tissue damage. Here, we first review how autophagy affects innate immune signaling, cell-autonomous immune defense, and adaptive immunity. Then, we discuss the role of non-canonical autophagy in microbial infections and inflammation. Finally, we review how crosstalk between autophagy and inflammation influences infectious, metabolic, and autoimmune disorders.

10.
Trends Biochem Sci ; 46(10): 787-789, 2021 10.
Article in English | MEDLINE | ID: mdl-34154877

ABSTRACT

ATG8 are core autophagy proteins, the lipidated forms of which decorate double-membraned autophagosomes, as well as single-membraned organelles such as endolysosomes. Recent studies from the Florey and Münz laboratories delineate the status of single membrane-associated ATG8 proteins by indicating that their membrane anchoring can involve phosphatidylserine conjugation and their stabilization depends on ATG4 protease inhibition.


Subject(s)
Membrane Proteins , Microtubule-Associated Proteins , Autophagosomes , Autophagy-Related Protein 8 Family , Autophagy-Related Proteins
11.
Trends Microbiol ; 29(9): 798-810, 2021 09.
Article in English | MEDLINE | ID: mdl-33678557

ABSTRACT

Autophagy ensures the degradation of cytosolic substrates by the lysosomal pathway. Cargoes destined to be eliminated are confined within double-membrane vesicles called autophagosomes, prior to fusion with endolysosomal vacuoles. Autophagy receptors selectively interact with cargoes and route them to elongating autophagic membranes, a process referred to as selective autophagy. Besides contributing to cell homeostasis, selective autophagy constitutes an important cell-autonomous defense mechanism against viruses. We review observations related to selective autophagy receptor engagement during host cell responses to virus infection. We examine the distinct roles of autophagy receptors in antiviral autophagy, consider the strategies viruses have evolved to escape or oppose such restrictions, and delineate the contributions of selective autophagy to the tailoring of antiviral innate responses. Finally, we mention some open and emerging questions in the field.


Subject(s)
Autophagy , Receptors, Virus/immunology , Virus Diseases/physiopathology , Animals , Humans , Receptors, Virus/genetics , Virus Diseases/immunology , Virus Diseases/virology , Virus Physiological Phenomena , Virus Replication , Viruses/genetics , Viruses/immunology
12.
Microb Cell ; 7(4): 93-105, 2020 Mar 19.
Article in English | MEDLINE | ID: mdl-32274388

ABSTRACT

The complement system is a major component of innate immunity that participates in the defense of the host against a myriad of pathogenic microorganisms. Activation of complement allows for both local inflammatory response and physical elimination of microbes through phagocytosis or lysis. The system is highly efficient and is therefore finely regulated. In addition to these well-established properties, recent works have revealed that components of the complement system can be involved in a variety of other functions including in autophagy, the conserved mechanism that allows for the targeting and degradation of cytosolic materials by the lysosomal pathway after confining them into specialized organelles called autophagosomes. Besides impacting cell death, development or metabolism, the complement factors-autophagy connection can greatly modulate the cell autonomous, anti-microbial activity of autophagy: xenophagy. Both surface receptor-ligand interactions and intracellular interactions are involved in the modulation of the autophagic response to intracellular microbes by complement factors. Here, we review works that relate to the recently discovered connections between factors of the complement system and the functioning of autophagy in the context of host-pathogen relationship.

13.
Autophagy ; 16(10): 1858-1870, 2020 10.
Article in English | MEDLINE | ID: mdl-31905032

ABSTRACT

Crimean-Congo hemorrhagic fever virus (CCHFV) is a virus that causes severe liver dysfunctions and hemorrhagic fever, with high mortality rate. Here, we show that CCHFV infection caused a massive lipidation of LC3 in hepatocytes. This lipidation was not dependent on ATG5, ATG7 or BECN1, and no signs for recruitment of the alternative ATG12-ATG3 pathway for lipidation was found. Both virus replication and protein synthesis were required for the lipidation of LC3. Despite an augmented transcription of SQSTM1, the amount of proteins did not show a massive and sustained increase in infected cells, indicating that degradation of SQSTM1 by macroautophagy/autophagy was still occurring. The genetic alteration of autophagy did not influence the production of CCHFV particles demonstrating that autophagy was not required for CCHFV replication. Thus, the results indicate that CCHFV multiplication imposes an overtly elevated level of LC3 mobilization that involves a possibly novel type of non-canonical lipidation. Abbreviations: BECN1: Beclin 1; CCHF: Crimean-Congo hemorrhagic fever; CCHFV: Crimean-Congo hemorrhagic fever virus; CHX: cycloheximide; ER: endoplasmic reticulum; GFP: green fluorescent protein; GP: glycoproteins; MAP1LC3: microtubule associated protein 1 light chain 3; MOI: multiplicity of infection; n.i.: non-infected; NP: nucleoprotein; p.i.: post-infection; SQSTM1: sequestosome 1.


Subject(s)
Autophagy , Epithelial Cells/virology , Hemorrhagic Fever Virus, Crimean-Congo/metabolism , Hemorrhagic Fever, Crimean/virology , Virus Replication , Animals , Autophagy-Related Protein 5/metabolism , Autophagy-Related Protein 7/metabolism , Beclin-1/metabolism , Chlorocebus aethiops , HeLa Cells , Hemorrhagic Fever Virus, Crimean-Congo/genetics , Hemorrhagic Fever, Crimean/diagnosis , Hemorrhagic Fever, Crimean/metabolism , Hep G2 Cells , Hepatocytes/virology , Humans , Lipids/chemistry , Microtubule-Associated Proteins/metabolism , Protein Biosynthesis , Sequestosome-1 Protein/metabolism , Vero Cells
14.
Eur J Immunol ; 49(6): 894-910, 2019 06.
Article in English | MEDLINE | ID: mdl-30912587

ABSTRACT

It is established that iNKT cells are a cell type that require strong TCR signal for their proper development and represent a model for thymic agonist selection. The nature of the signal perceived by iNKT cells promoting their specification is not well understood. To address this question, we analyzed iNKT cell development in relevant TCR Vα14-Jα18 alpha chain transgenic mice (Vα14Tg). In CD4-Vα14Tg mice, where the transgene is driven by CD4 promoter, we identified a block in iNKT cell development at early developmental stages due to a reduced expression of key transcription factors accompanied with a reduced TCR expression levels. This indicates that TCR signal strength control iNKT cell differentiation. Importantly, we found in WT mice that early precursors of iNKT cells express higher TCR levels compared to positively selected precursors of mainstream T cells showing that TCR levels could contribute to the strength of iNKT cell TCR signaling. Overall, our study highlights TCR signal strength associated with a higher TCR density as an important regulator of iNKT cell lineage specification.


Subject(s)
Natural Killer T-Cells/cytology , Receptors, Antigen, T-Cell, alpha-beta/metabolism , T-Lymphocyte Subsets/cytology , Animals , Cell Differentiation/immunology , Cell Lineage/immunology , Mice , Mice, Transgenic , Natural Killer T-Cells/immunology , Natural Killer T-Cells/metabolism , Receptors, Antigen, T-Cell, alpha-beta/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
15.
Trends Cell Biol ; 29(1): 1-3, 2019 01.
Article in English | MEDLINE | ID: mdl-30415939

ABSTRACT

During macroautophagy, cytosolic elements are confined in autophagosomes before fusion with endolysosomes for degradation or recycling. Recruitment of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) factor syntaxin 17 (STX17) is instrumental for this maturation step. Two recent studies indicate that the kinase ULK1 and the apoptosis modulator BRUCE both regulate STX17 engagement during autophagosome maturation in mammalian cells.


Subject(s)
Autophagosomes/metabolism , Qa-SNARE Proteins/metabolism , Humans
16.
J Mol Biol ; 430(12): 1696-1713, 2018 06 08.
Article in English | MEDLINE | ID: mdl-29698649

ABSTRACT

Autophagy refers to the conserved, multi-step mechanism that delivers cytosolic cargoes to vesicles of the endo-lysosomal system for degradation. It maintains cellular homeostasis by ensuring the continuous degradation of misformed/senescent intracellular components and the associated recycling of nutrients. Autophagy also represents an important cell-intrinsic defense mechanism against invasion by intracellular pathogens, including viruses. Autophagy might oppose viral invasion by targeting viral particles or viral components for degradation. It can also promote the interaction of viral constituents with receptors specialized in the activation of innate immunity pathways or facilitate the activation of anti-viral adaptive immunity. In response to such pressures, viruses have evolved various sophisticated strategies to avoid anti-viral autophagic responses or to manipulate the autophagic machinery to promote their own replication. This review focuses on our current knowledge of autophagy-related events that take place at early stages during interaction of viruses with host cells as well as on their associated consequences in terms of virus replication and cell fate.


Subject(s)
Autophagy , Virus Physiological Phenomena , Adaptive Immunity , Animals , Host Microbial Interactions , Humans , Immunity, Innate , Virus Replication , Viruses/immunology
17.
Trends Cell Biol ; 28(4): 255-257, 2018 04.
Article in English | MEDLINE | ID: mdl-29395717

ABSTRACT

NDP52/CALCOCO2 makes multiple contributions to selective autophagy. By interacting with cargos and LC3, NDP52 directs autophagy targets to autophagosomes. In addition, NDP52 promotes autophagosomes fusion with endolysosomes by connecting autophagosomes to MYOSIN VI. Recent studies reveal that Rab35 GTPase controls NDP52 recruitment to its targets and that NDP52 triggers MYOSIN VI (MYO6) motility.


Subject(s)
Autophagosomes/metabolism , Autophagy , Endosomes/metabolism , Lysosomes/metabolism , Nuclear Proteins/metabolism , Humans , Models, Biological , Myosin Heavy Chains/metabolism , Protein Binding , rab GTP-Binding Proteins/metabolism
18.
Viruses ; 9(12)2017 11 24.
Article in English | MEDLINE | ID: mdl-29186766

ABSTRACT

Autophagy is a biological process that helps cells to recycle obsolete cellular components and which greatly contributes to maintaining cellular integrity in response to environmental stress factors. Autophagy is also among the first lines of cellular defense against invading microorganisms, including viruses. The autophagic destruction of invading pathogens, a process referred to as xenophagy, involves cytosolic autophagy receptors, such as p62/SQSTM1 (Sequestosome 1) or NDP52/CALCOCO2 (Nuclear Dot 52 KDa Protein/Calcium Binding And Coiled-Coil Domain 2), which bind to microbial components and target them towards growing autophagosomes for degradation. However, most, if not all, infectious viruses have evolved molecular tricks to escape from xenophagy. Many viruses even use autophagy, part of the autophagy pathway or some autophagy-associated proteins, to improve their infectious potential. In this regard, the measles virus, responsible for epidemic measles, has a unique interface with autophagy as the virus can induce multiple rounds of autophagy in the course of infection. These successive waves of autophagy result from distinct molecular pathways and seem associated with anti- and/or pro-measles virus consequences. In this review, we describe what the autophagy-measles virus interplay has taught us about both the biology of the virus and the mechanistic orchestration of autophagy.


Subject(s)
Autophagy , Measles virus/physiology , Measles/virology , Cell Cycle Proteins , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Measles/immunology , Measles virus/immunology , Membrane Cofactor Protein/genetics , Membrane Cofactor Protein/metabolism , Membrane Transport Proteins , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Sequestosome-1 Protein/genetics , Sequestosome-1 Protein/metabolism , Transcription Factor TFIIIA/genetics , Transcription Factor TFIIIA/metabolism , Virus Replication
19.
Viruses ; 9(5)2017 05 22.
Article in English | MEDLINE | ID: mdl-28531150

ABSTRACT

Autophagy is a potent cell autonomous defense mechanism that engages the lysosomal pathway to fight intracellular pathogens. Several autophagy receptors can recognize invading pathogens in order to target them towards autophagy for their degradation after the fusion of pathogen-containing autophagosomes with lysosomes. However, numerous intracellular pathogens can avoid or exploit autophagy, among which is measles virus (MeV). This virus induces a complete autophagy flux, which is required to improve viral replication. We therefore asked how measles virus interferes with autophagy receptors during the course of infection. We report that in addition to NDP52/CALCOCO2 and OPTINEURIN/OPTN, another autophagy receptor, namely T6BP/TAXIBP1, also regulates the maturation of autophagosomes by promoting their fusion with lysosomes, independently of any infection. Surprisingly, only two of these receptors, NDP52 and T6BP, impacted measles virus replication, although independently, and possibly through physical interaction with MeV proteins. Thus, our results suggest that a restricted set of autophagosomes is selectively exploited by measles virus to replicate in the course of infection.


Subject(s)
Autophagy/physiology , Carrier Proteins/physiology , Measles virus/physiology , Measles/virology , Virus Replication/physiology , Cell Cycle Proteins , HeLa Cells , Host-Pathogen Interactions , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Lysosomes/metabolism , Measles virus/pathogenicity , Membrane Transport Proteins , Neoplasm Proteins/metabolism , Nuclear Proteins/metabolism , Phagosomes/metabolism , Transcription Factor TFIIIA/metabolism , Viral Proteins/metabolism
20.
Fluids Barriers CNS ; 12: 20, 2015 Sep 02.
Article in English | MEDLINE | ID: mdl-26330053

ABSTRACT

The aim of this review is to outline evidence that adenosine receptor (AR) activation can modulate blood-brain barrier (BBB) permeability and the implications for disease states and drug delivery. Barriers of the central nervous system (CNS) constitute a protective and regulatory interface between the CNS and the rest of the organism. Such barriers allow for the maintenance of the homeostasis of the CNS milieu. Among them, the BBB is a highly efficient permeability barrier that separates the brain micro-environment from the circulating blood. It is made up of tight junction-connected endothelial cells with specialized transporters to selectively control the passage of nutrients required for neural homeostasis and function, while preventing the entry of neurotoxic factors. The identification of cellular and molecular mechanisms involved in the development and function of CNS barriers is required for a better understanding of CNS homeostasis in both physiological and pathological settings. It has long been recognized that the endogenous purine nucleoside adenosine is a potent modulator of a large number of neurological functions. More recently, experimental studies conducted with human/mouse brain primary endothelial cells as well as with mouse models, indicate that adenosine markedly regulates BBB permeability. Extracellular adenosine, which is efficiently generated through the catabolism of ATP via the CD39/CD73 ecto-nucleotidase axis, promotes BBB permeability by signaling through A1 and A2A ARs expressed on BBB cells. In line with this hypothesis, induction of AR signaling by selective agonists efficiently augments BBB permeability in a transient manner and promotes the entry of macromolecules into the CNS. Conversely, antagonism of AR signaling blocks the entry of inflammatory cells and soluble factors into the brain. Thus, AR modulation of the BBB appears as a system susceptible to tighten as well as to permeabilize the BBB. Collectively, these findings point to AR manipulation as a pertinent avenue of research for novel strategies aiming at efficiently delivering therapeutic drugs/cells into the CNS, or at restricting the entry of inflammatory immune cells into the brain in some diseases such as multiple sclerosis.


Subject(s)
Adenosine/metabolism , Blood-Brain Barrier/metabolism , Neurons/metabolism , Receptors, Purinergic P1/metabolism , Signal Transduction , Animals , Blood-Brain Barrier/cytology , Capillary Permeability , Drug Delivery Systems , Endothelial Cells/metabolism , Humans , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...