Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Geochem Health ; 46(6): 208, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806960

ABSTRACT

Concentrations of potentially toxic elements (PTEs) like arsenic, uranium, iron, and nitrate in the groundwater of the Majha Belt (including Tarn Taran, Amritsar, Gurdaspur, and Pathankot districts) in Punjab, India were measured to evaluate the health risks associated with its consumption and daily use. The average concentrations of these elements in some locations exceeded the WHO-recommended values. Arsenic and iron toxicity levels were found to be higher in the Amritsar district, while uranium toxicity was more prevalent in Tarn Taran. The Trace Element Evaluation Index suggests that Amritsar is one of the districts most affected by toxic elements. According to the US Environmental Protection Agency's (USEPA) guidelines, the HQ values of U, Fe, and nitrate were less than one, indicating that there is no non-carcinogenic health risk for adults and children. However, the hazard quotient (HQ) value for arsenic was greater than one, indicating a higher possibility of health risk due to arsenic in the study area. The total hazard index values of 44.10% of samples were greater than four for arsenic, indicating that people in the Majha Belt are at a very high health risk due to the usage of water for drinking and domestic purposes. The cancer risk assessment values for arsenic in children (5.69E + 0) and adults (4.07E + 0) were higher than the accepted limit of USEPA (10-4 to 10-6) in the Majha Belt. The average radiological cancer risk values of U for children and adults were 8.68E-07 and 9.45E-06, respectively, which are well below the permissible limit of 1.67 × 10-4 suggested by the Atomic Energy Regulatory Board of DAE, India. The results of this study confirm that the residents of the Majha Belt who use contaminated groundwater are at a serious risk of exposure to arsenic in the Amritsar district and uranium in Tarn Taran district.


Subject(s)
Arsenic , Groundwater , Water Pollutants, Chemical , India , Groundwater/chemistry , Risk Assessment , Arsenic/analysis , Water Pollutants, Chemical/analysis , Humans , Uranium/analysis , Nitrates/analysis , Environmental Monitoring , Iron/analysis , Child , Adult
3.
Environ Sci Pollut Res Int ; 30(26): 69258-69273, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37133669

ABSTRACT

The hydrosphere although covering almost 70% of the Earth contributes only 3% of fresh water out of which groundwater covers almost 98%. The presence of some unwanted substance in this limited natural resource causes pollution when the substance causes serious harm to human beings and to the total ecosystem in a way. Arsenic is such a pollutant that is most naturally released in groundwater and long-term exposure to As-rich groundwater causes skin lesions and often leads to different types of cancers in humans. Rupnagar district in the Malwa region of Punjab is situated alongside the river Satluj which is one of the five important tributaries of Indus. The lowest reported concentration of As in this district is 10 µg/L and the highest is 91 µg/L. The higher values of As (> 50 µg/L) that are above the permissible limit of IS 10500, 2004 in drinking water, are dominantly found in the western and south-western parts of the district. The average hazard quotient (HQ) indicates high risk for the consumers of the As-polluted groundwater in the district. The present study deals with the major cause of high arsenic (As) concentration in groundwater and its correlation with intensive agriculture in the Rupnagar district. Owing to the large size of the district, GIS techniques like ArcGIS 10.4.1 and QGIS 3.22.8 software were used for analysis in this study. The study reveals that high As concentration (> 50 µg/L) is mostly found in agricultural lands and moderate concentration of As (10-50 µg/L) in groundwater is distributed all over the district and are mostly reported from the urbanised areas. Overall, the water table shows a declining trend but no such decline is observed in the western and south-western parts of the district. As pollution in groundwater can also be caused due to water level decline owing to intensive agriculture and rapid water abstraction though As is naturally sourced in groundwater. A detailed study using the geochemical analysis of groundwater in the district can be effective in clearing out the scenario in the study area.


Subject(s)
Arsenic , Drinking Water , Groundwater , Water Pollutants, Chemical , Humans , Arsenic/analysis , Ecosystem , Water Pollutants, Chemical/analysis , Environmental Monitoring , Drinking Water/analysis , Groundwater/chemistry , India
5.
Sci Total Environ ; 807(Pt 2): 151753, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-34822893

ABSTRACT

Despite numerous studies, there are many knowledge gaps in our understanding of uranium (U) contamination in the alluvial aquifers of Punjab, India. In this study, a large hydrogeochemical dataset was compiled to better understand the major factors controlling the mobility and enrichment of uranium (U) in this groundwater system. The results showed that shallow groundwaters (<60 m) are more contaminated with U than from deeper depths (>60 m). This effect was predominant in the Southwest districts of the Malwa, facing significant risk due to chemical toxicity of U. Groundwaters are mostly oxidizing and alkaline (median pH: 7.25 to 7.33) in nature. Spearman correlation analysis showed that U concentrations are more closely related to total dissolved solids (TDS), salinity, Na, K, HCO3-, NO3- Cl-, and F- in shallow water than deep water, but TDS and salinity remained highly correlated (U-TDS: ρ = 0.5 to 0.6; U-salinity: ρ = 0.5). This correlation suggests that the salt effect due to high competition between ions is the principal cause of U mobilization. This effect is evident when the U level increased with increasing mixed water species (Na-Cl, Mg-Cl, and Na-HCO3). Speciation data showed that the most dominant U species are Ca2UO2(CO3)2- and CaUO2(CO3)3-, which are responsible for the U mobility. Based on the field parameters, TDS along with pH and oxidation-reduction potential (ORP) were better fitted to U concentration above the WHO guideline value (30 µg.L-1), thus this combination could be used as a quick indicator of U contamination. The strong positive correlation of U with F- (ρ = 0.5) in shallow waters indicates that their primary source is geogenic, while anthropogenic factors such as canal irrigation, groundwater table decline, and use of agrochemicals (mainly nitrate fertilizers) as well as climate-related factors i.e., high evaporation under arid/semi-arid climatic conditions, which result in higher redox and TDS/salinity levels, may greatly affect enrichment of U. The geochemical rationale of this study will provide Science-based-policy implications for U health risk assessment in this region and further extrapolate these findings to other arid/semi-arid areas worldwide.


Subject(s)
Groundwater , Uranium , Anthropogenic Effects , India
SELECTION OF CITATIONS
SEARCH DETAIL
...