Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Neuron ; 111(11): 1812-1829.e6, 2023 06 07.
Article in English | MEDLINE | ID: mdl-37023756

ABSTRACT

The sensation of itch is a protective response that is elicited by either mechanical or chemical stimuli. The neural pathways for itch transmission in the skin and spinal cord have been characterized previously, but the ascending pathways that transmit sensory information to the brain to evoke itch perception have not been identified. Here, we show that spinoparabrachial neurons co-expressing Calcrl and Lbx1 are essential for generating scratching responses to mechanical itch stimuli. Moreover, we find that mechanical and chemical itch are transmitted by separate ascending pathways to the parabrachial nucleus, where they engage separate populations of FoxP2PBN neurons to drive scratching behavior. In addition to revealing the architecture of the itch transmission circuitry required for protective scratching in healthy animals, we identify the cellular mechanisms underlying pathological itch by showing the ascending pathways for mechanical and chemical itch function cooperatively with the FoxP2PBN neurons to drive chronic itch and hyperknesis/alloknesis.


Subject(s)
Pruritus , Skin , Mice , Animals , Mice, Inbred C57BL , Pruritus/metabolism , Skin/metabolism , Neurons/physiology , Sensation
2.
Neurobiol Dis ; 173: 105857, 2022 10 15.
Article in English | MEDLINE | ID: mdl-36075537

ABSTRACT

Huntington disease (HD) is a neurodegenerative disorder caused by polyglutamine-encoding CAG repeat expansion in the huntingtin (HTT) gene. HTT is involved in the axonal transport of vesicles containing brain-derived neurotrophic factor (BDNF). In HD, diminished BDNF transport leads to reduced BDNF delivery to the striatum, contributing to striatal and cortical neuronal death. Pridopidine is a selective and potent sigma-1 receptor (S1R) agonist currently in clinical development for HD. The S1R is located at the endoplasmic reticulum (ER)-mitochondria interface, where it regulates key cellular pathways commonly impaired in neurodegenerative diseases. We used a microfluidic device that reconstitutes the corticostriatal network, allowing the investigation of presynaptic dynamics, synaptic morphology and transmission, and postsynaptic signaling. Culturing primary neurons from the HD mouse model HdhCAG140/+ provides a "disease-on-a-chip" platform ideal for investigating pathogenic mechanisms and drug activity. Pridopidine rescued the trafficking of BDNF and TrkB resulting in an increased neurotrophin signaling at the synapse. This increased the capacity of HD neurons to release glutamate and restored homeostasis at the corticostriatal synapse. These data suggest that pridopidine enhances the availability of corticostriatal BDNF via S1R activation, leading to neuroprotective effects.


Subject(s)
Huntington Disease , Neuroprotective Agents , Animals , Brain/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Disease Models, Animal , Glutamates/pharmacology , Glutamates/therapeutic use , Homeostasis , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntington Disease/genetics , Lab-On-A-Chip Devices , Mice , Neuroprotective Agents/pharmacology , Piperidines , Synapses/metabolism
3.
Sci Adv ; 7(14)2021 03.
Article in English | MEDLINE | ID: mdl-33789888

ABSTRACT

Huntington disease (HD) damages the corticostriatal circuitry in large part by impairing transport of brain-derived neurotrophic factor (BDNF). We hypothesized that improving vesicular transport of BDNF could slow or prevent disease progression. We therefore performed selective proteomic analysis of vesicles transported within corticostriatal projecting neurons followed by in silico screening and identified palmitoylation as a pathway that could restore defective huntingtin-dependent trafficking. Using a synchronized trafficking assay and an HD network-on-a-chip, we found that increasing brain palmitoylation via ML348, which inhibits the palmitate-removing enzyme acyl-protein thioesterase 1 (APT1), restores axonal transport, synapse homeostasis, and survival signaling to wild-type levels without toxicity. In human HD induced pluripotent stem cell-derived cortical neurons, ML348 increased BDNF trafficking. In HD knock-in mice, it efficiently crossed the blood-brain barrier to restore palmitoylation levels and reverse neuropathology, locomotor deficits, and anxio-depressive behaviors. APT1 and its inhibitor ML348 thus hold therapeutic interest for HD.


Subject(s)
Huntington Disease , Animals , Brain/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Huntington Disease/genetics , Huntington Disease/metabolism , Huntington Disease/pathology , Lipoylation , Mice , Proteomics
4.
Cell Rep ; 35(2): 108980, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33852844

ABSTRACT

The huntingtin (HTT) protein transports various organelles, including vesicles containing neurotrophic factors, from embryonic development throughout life. To better understand how HTT mediates axonal transport and why this function is disrupted in Huntington's disease (HD), we study vesicle-associated HTT and find that it is dimethylated at a highly conserved arginine residue (R118) by the protein arginine methyltransferase 6 (PRMT6). Without R118 methylation, HTT associates less with vesicles, anterograde trafficking is diminished, and neuronal death ensues-very similar to what occurs in HD. Inhibiting PRMT6 in HD cells and neurons exacerbates mutant HTT (mHTT) toxicity and impairs axonal trafficking, whereas overexpressing PRMT6 restores axonal transport and neuronal viability, except in the presence of a methylation-defective variant of mHTT. In HD flies, overexpressing PRMT6 rescues axonal defects and eclosion. Arginine methylation thus regulates HTT-mediated vesicular transport along the axon, and increasing HTT methylation could be of therapeutic interest for HD.


Subject(s)
Axonal Transport/genetics , Epigenesis, Genetic , Huntingtin Protein/genetics , Huntington Disease/genetics , Nuclear Proteins/genetics , Protein-Arginine N-Methyltransferases/genetics , Transport Vesicles/metabolism , Amino Acid Sequence , Animals , Arginine/metabolism , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Cell Death , Disease Models, Animal , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Huntingtin Protein/metabolism , Huntington Disease/metabolism , Huntington Disease/pathology , Methylation , Mice , Mice, Transgenic , Neuromuscular Junction/genetics , Neuromuscular Junction/metabolism , Neuromuscular Junction/pathology , Neurons/metabolism , Neurons/pathology , Nuclear Proteins/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein-Arginine N-Methyltransferases/metabolism , Transport Vesicles/genetics , Transport Vesicles/pathology
5.
Cell Rep ; 22(1): 110-122, 2018 01 02.
Article in English | MEDLINE | ID: mdl-29298414

ABSTRACT

Huntington's disease (HD), a devastating neurodegenerative disorder, strongly affects the corticostriatal network, but the contribution of pre- and postsynaptic neurons in the first phases of disease is unclear due to difficulties performing early subcellular investigations in vivo. Here, we have developed an on-a-chip approach to reconstitute an HD corticostriatal network in vitro, using microfluidic devices compatible with subcellular resolution. We observed major defects in the different compartments of the corticostriatal circuit, from presynaptic dynamics to synaptic structure and transmission and to postsynaptic traffic and signaling, that correlate with altered global synchrony of the network. Importantly, the genetic status of the presynaptic compartment was necessary and sufficient to alter or restore the circuit. This highlights an important weight for the presynaptic compartment in HD that has to be considered for future therapies. This disease-on-a-chip microfluidic platform is thus a physiologically relevant in vitro system for investigating pathogenic mechanisms and for identifying drugs.


Subject(s)
Corpus Striatum , Huntington Disease , Lab-On-A-Chip Devices , Nerve Net , Presynaptic Terminals , Synaptic Transmission , Animals , Corpus Striatum/metabolism , Corpus Striatum/pathology , Huntington Disease/genetics , Huntington Disease/metabolism , Huntington Disease/pathology , Mice , Mice, Transgenic , Nerve Net/metabolism , Nerve Net/pathology , Presynaptic Terminals/metabolism , Presynaptic Terminals/pathology
6.
Nat Commun ; 7: 13233, 2016 10 24.
Article in English | MEDLINE | ID: mdl-27775035

ABSTRACT

The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) facilitates fast axonal transport in neurons. However, given that GAPDH does not produce ATP, it is unclear whether glycolysis per se is sufficient to propel vesicles. Although many proteins regulating transport have been identified, the molecular composition of transported vesicles in neurons has yet to be fully elucidated. Here we selectively enrich motile vesicles and perform quantitative proteomic analysis. In addition to the expected molecular motors and vesicular proteins, we find an enrichment of all the glycolytic enzymes. Using biochemical approaches and super-resolution microscopy, we observe that most glycolytic enzymes are selectively associated with vesicles and facilitate transport of vesicles in neurons. Finally, we provide evidence that mouse brain vesicles produce ATP from ADP and glucose, and display movement in a reconstituted in vitro transport assay of native vesicles. We conclude that transport of vesicles along microtubules can be autonomous.


Subject(s)
Brain/metabolism , Energy Metabolism , Glycolysis , Neurons/metabolism , Transport Vesicles/metabolism , Adenosine Triphosphate/metabolism , Animals , Cells, Cultured , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Mice , Mice, Transgenic , Microtubules/metabolism , Neurons/cytology , Proteome/metabolism , Proteomics/methods , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...