Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 11(11): 6862-6880, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34141261

ABSTRACT

Biogenic Volatile Organic Compounds (BVOC) are largely accepted to contribute to both atmospheric chemistry and ecosystem functioning. While the forest canopy is recognized as a major source of BVOC, emissions from plant litter have scarcely been explored with just a couple of studies being focused on emission patterns over litter decomposition process. The aim of this study was to quantitatively and qualitatively characterize BVOC emissions (C1-C15) from Pinus halepensis litter, one of the major Mediterranean conifer species, over a 15-month litter decomposition experiment. Senescent needles of P. halepensis were collected and placed in 42 litterbags where they underwent in situ decomposition. Litterbags were collected every 3 months and litter BVOC emissions were studied in vitro using both online (PTR-ToF-MS) and offline analyses (GC-MS). Results showed a large diversity of BVOC (58 compounds detected), with a strong variation over time. Maximum total BVOC emissions were observed after 3 months of decomposition with 9.18 µg gDM -1 hr-1 mainly composed by terpene emissions (e.g., α-pinene, terpinolene, ß-caryophyllene). At this stage, methanol, acetone, and acetic acid were the most important nonterpenic volatiles representing, respectively, up to 26%, 10%, and 26% of total emissions. This study gives an overview of the evolution of BVOC emissions from litter along with decomposition process and will thus contribute to better understand the dynamics and sources of BVOC emission in Mediterranean pine forests.

2.
Plants (Basel) ; 9(2)2020 Jan 28.
Article in English | MEDLINE | ID: mdl-32012939

ABSTRACT

Isoprene, the main volatile released by plants, is known to protect the photosynthetic apparatus in isoprene emitters submitted to oxidative pressures caused by environmental constraints. Whether ambient isoprene contributes to protect negligible plant emitters under abiotic stress conditions is less clear, and no study has tested if ambient isoprene is beneficial during drought periods in plant species that naturally release negligible isoprene emissions. This study examines the effect of exogenous isoprene (20 ppbv) on net photosynthesis, stomatal conductance and production of H2O2 (a reactive oxygen species: ROS) in leaves of Acer monspessulanum (a negligible isoprene emitter) submitted to three watering treatments (optimal, moderate water stress and severe water stress). Results showed that A. monspessulanum exhibited a net photosynthesis increase (+30%) and a relative leaf H2O2 decrease when saplings were exposed to an enriched isoprene atmosphere compared to isoprene-free conditions under moderate water deficit. Such physiological improvement under isoprene exposure was not observed under optimal watering or severe water stress. These findings suggest that when negligible isoprene emitters are surrounded by a very high concentration of isoprene in the ambient air, some plant protection mechanism occurs under moderate water deficit probably related to protection against ROS damage eventually impeding photosynthesis drop.

SELECTION OF CITATIONS
SEARCH DETAIL
...