Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
1.
J Biol Chem ; : 107391, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38777144

ABSTRACT

The duration of the transcription-repression cycles that give rise to mammalian circadian rhythms is largely determined by the stability of the PERIOD protein, the rate-limiting components of the molecular clock. The degradation of PERs is tightly regulated by multisite phosphorylation by Casein Kinase 1 (CK1δ/ε). In this phosphoswitch, phosphorylation of a PER2 degron (Degron 2, D2) causes degradation, while phosphorylation of the PER2 Familial Advanced Sleep Phase (FASP) domain blocks CK1 activity on the degron, stabilizing PER2. However, this model and many other studies of PER2 degradation do not include the second degron of PER2 that is conserved in PER1, termed Degron 1, D1. We examined how these two degrons contribute to PER2 stability, affect the balance of the phosphoswitch, and how they are differentiated by CK1. Using PER2-luciferase fusions and real-time luminometry, we investigated the contribution of both D2 and of CK1-PER2 binding. We find that D1, like D2, is a substrate of CK1 but that D1 plays only a 'backup' role in PER2 degradation. Notably, CK1 bound to a PER1:PER2 dimer protein can phosphorylate PER1 D1 in trans. This scaffolded phosphorylation provides additional levels of control to PER stability and circadian rhythms.

2.
Sci Adv ; 10(14): eadk1031, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38569029

ABSTRACT

Pathologic Wnt/ß-catenin signaling drives various cancers, leading to multiple approaches to drug this pathway. Appropriate patient selection can maximize success of these interventions. Wnt ligand addiction is a druggable vulnerability in RNF43-mutant/RSPO-fusion cancers. However, pharmacologically targeting the biogenesis of Wnt ligands, e.g., with PORCN inhibitors, has shown mixed therapeutic responses, possibly due to tumor heterogeneity. Here, we show that the tumor suppressor FBXW7 is frequently mutated in RNF43-mutant/RSPO-fusion tumors, and FBXW7 mutations cause intrinsic resistance to anti-Wnt therapies. Mechanistically, FBXW7 inactivation stabilizes multiple oncoproteins including Cyclin E and MYC and antagonizes the cytostatic effect of Wnt inhibitors. Moreover, although FBXW7 mutations do not mitigate ß-catenin degradation upon Wnt inhibition, FBXW7-mutant RNF43-mutant/RSPO-fusion cancers instead lose dependence on ß-catenin signaling, accompanied by dedifferentiation and loss of lineage specificity. These FBXW7-mutant Wnt/ß-catenin-independent tumors are susceptible to multi-cyclin-dependent kinase inhibition. An in-depth understanding of primary resistance to anti-Wnt/ß-catenin therapies allows for more appropriate patient selection and use of alternative mechanism-based therapies.


Subject(s)
Neoplasms , beta Catenin , Humans , F-Box-WD Repeat-Containing Protein 7/genetics , F-Box-WD Repeat-Containing Protein 7/metabolism , beta Catenin/genetics , beta Catenin/metabolism , Ubiquitin-Protein Ligases/metabolism , Neoplasms/genetics , Mutation , Cell Line, Tumor , Acyltransferases/genetics , Acyltransferases/metabolism , Membrane Proteins/metabolism
3.
Cancer Res ; 84(8): 1195-1198, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38616656

ABSTRACT

The 15th annual Frontiers in Cancer Science (FCS) conference gathered scientific experts who shared the latest research converging upon several themes of cancer biology. These themes included the dysregulation of metabolism, cell death, and other signaling processes in cancer cells; using patient "omics" datasets and single-cell and spatial approaches to investigate heterogeneity, understand therapy resistance, and identify targets; innovative strategies for inhibiting tumors, including rational drug combinations and improved drug delivery mechanisms; and advances in models that can facilitate screening for cancer vulnerabilities and drug testing. We hope the insights from this meeting will stimulate further progress in the field.


Subject(s)
Neoplasms , Research , Humans , Cell Death , Drug Delivery Systems , Neoplasms/therapy
4.
J Clin Invest ; 134(6)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38488003

ABSTRACT

Wnts, cholesterol, and MAPK signaling are essential for development and adult homeostasis. Here, we report that fatty acid hydroxylase domain containing 2 (FAXDC2), a previously uncharacterized enzyme, functions as a methyl sterol oxidase catalyzing C4 demethylation in the Kandutsch-Russell branch of the cholesterol biosynthesis pathway. FAXDC2, a paralog of MSMO1, regulated the abundance of the specific C4-methyl sterols lophenol and dihydro-T-MAS. Highlighting its clinical relevance, FAXDC2 was repressed in Wnt/ß-catenin-high cancer xenografts, in a mouse genetic model of Wnt activation, and in human colorectal cancers. Moreover, in primary human colorectal cancers, the sterol lophenol, regulated by FAXDC2, accumulated in the cancerous tissues and not in adjacent normal tissues. FAXDC2 linked Wnts to RTK/MAPK signaling. Wnt inhibition drove increased recycling of RTKs and activation of the MAPK pathway, and this required FAXDC2. Blocking Wnt signaling in Wnt-high cancers caused both differentiation and senescence; and this was prevented by knockout of FAXDC2. Our data show the integration of 3 ancient pathways, Wnts, cholesterol synthesis, and RTK/MAPK signaling, in cellular proliferation and differentiation.


Subject(s)
Colorectal Neoplasms , beta Catenin , Adult , Humans , Mice , Animals , beta Catenin/genetics , beta Catenin/metabolism , Wnt Signaling Pathway , Cell Proliferation , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism
5.
Mol Cell ; 83(10): 1677-1692.e8, 2023 05 18.
Article in English | MEDLINE | ID: mdl-37207626

ABSTRACT

PERIOD (PER) and Casein Kinase 1δ regulate circadian rhythms through a phosphoswitch that controls PER stability and repressive activity in the molecular clock. CK1δ phosphorylation of the familial advanced sleep phase (FASP) serine cluster embedded within the Casein Kinase 1 binding domain (CK1BD) of mammalian PER1/2 inhibits its activity on phosphodegrons to stabilize PER and extend circadian period. Here, we show that the phosphorylated FASP region (pFASP) of PER2 directly interacts with and inhibits CK1δ. Co-crystal structures in conjunction with molecular dynamics simulations reveal how pFASP phosphoserines dock into conserved anion binding sites near the active site of CK1δ. Limiting phosphorylation of the FASP serine cluster reduces product inhibition, decreasing PER2 stability and shortening circadian period in human cells. We found that Drosophila PER also regulates CK1δ via feedback inhibition through the phosphorylated PER-Short domain, revealing a conserved mechanism by which PER phosphorylation near the CK1BD regulates CK1 kinase activity.


Subject(s)
Circadian Clocks , Period Circadian Proteins , Animals , Humans , Phosphorylation , Feedback , Period Circadian Proteins/genetics , Period Circadian Proteins/metabolism , Casein Kinase I/genetics , Casein Kinase I/metabolism , Circadian Rhythm/genetics , Drosophila/metabolism , Serine/metabolism , Mammals/metabolism
6.
Int J Mol Sci ; 24(5)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36902186

ABSTRACT

There is an increasing urgency in the search for new drugs to target high-grade cancers such as osteosarcomas (OS), as these have limited therapeutic options and poor prognostic outlook. Even though key molecular events leading to tumorigenesis are not well understood, it is widely agreed that OS tumours are Wnt-driven. ETC-159, a PORCN inhibitor that inhibits the extracellular secretion of Wnt, has recently progressed on to clinical trials. In vitro and in vivo murine and chick chorioallantoic membrane xenograft models were established to examine the effect of ETC-159 on OS. Consistent with our hypothesis, we noted that ETC-159 treatment not only resulted in markedly decreased ß-catenin staining in xenografts, but also increased tumour necrosis and a significant reduction in vascularity-a hereby yet undescribed phenotype following ETC-159 treatment. Through further understanding the mechanism of this new window of vulnerability, therapies can be developed to potentiate and maximize the effectiveness of ETC-159, further increasing its clinical utility for the treatment of OS.


Subject(s)
Acyltransferases , Bone Neoplasms , Neovascularization, Pathologic , Osteosarcoma , Wnt Signaling Pathway , Animals , Humans , Mice , Acyltransferases/antagonists & inhibitors , beta Catenin/metabolism , Bone Neoplasms/blood supply , Bone Neoplasms/drug therapy , Carcinogenesis/genetics , Cell Line, Tumor , Cell Proliferation , Membrane Proteins/antagonists & inhibitors , Necrosis , Osteosarcoma/blood supply , Osteosarcoma/drug therapy , Wnt Signaling Pathway/drug effects , Neovascularization, Pathologic/drug therapy
7.
Biochem Soc Trans ; 50(6): 1797-1808, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36484635

ABSTRACT

Wnts are lipid-modified signaling glycoproteins present in all metazoans that play key roles in development and homeostasis. Post-translational modifications of Wnts regulate their function. Wnts have a unique post-translational modification, O-linked palmitoleation, that is absolutely required for their function. This Wnt-specific modification occurs during Wnt biosynthesis in the endoplasmic reticulum (ER), catalyzed by the O-acyltransferase Porcupine (PORCN). Palmitoleation is required for Wnt to bind to its transporter Wntless (WLS/Evi) as well as to its receptor Frizzled (FZD). Recent structural studies have illustrated how PORCN recognizes its substrates, and how drugs inhibit this. The abundance of WLS is tightly regulated by intracellular recycling and ubiquitylation-mediated degradation in the ER. The function of Wnt glycosylation is less well understood, and the sites and types of glycosylation are not largely conserved among different Wnts. In polarized tissues, the type of glycans can determine whether the route of trafficking is apical or basolateral. In addition, pairing of the 24 highly conserved cysteines in Wnts to form disulfide bonds is critical in maintaining proper structure and activities. Extracellularly, the amino terminus of a subset of Wnts can be cleaved by a dedicated glycosylphosphatidylinositol (GPI)-anchored metalloprotease TIKI, resulting in the inactivation of these Wnt proteins. Additionally, NOTUM is a secreted extracellular carboxylesterase that removes the palmitoleate moiety from Wnt, antagonizing its activity. In summary, Wnt signaling activity is controlled at multiple layers by post-translational modifications.


Subject(s)
Protein Processing, Post-Translational , Wnt Proteins , Wnt Proteins/metabolism , Wnt Signaling Pathway , Acyltransferases/metabolism , Endoplasmic Reticulum/metabolism
8.
Curr Top Dev Biol ; 150: 91-128, 2022.
Article in English | MEDLINE | ID: mdl-35817507

ABSTRACT

Wnts are a family of secreted, lipid-modified signaling glycoproteins that regulate a multiplicity of fundamental biological processes. Wnt signaling is essential for embryonic development, controlling body axis patterning, cell proliferation, cell migration and cell fate specification needed for proper tissue and organ formation. In adulthood, Wnt signaling controls tissue regeneration in a wide range of organs, and disturbance of this system is common in cancer and other diseases. A key feature of Wnt signaling is that it is a local process. Wnts signal via paracrine, cell-to-cell communication. Upon synthesis and transport to the plasma membrane in the "sending" cell, Wnts travel to nearby "receiving" cells. At the plasma membrane of these receiving cells, they interact with a variety of cell-surface receptors. This interaction triggers a diversity of different downstream signaling events, including the stabilization of ß-catenin and tissue-specific changes in gene expression. Wnt signaling is a local event because as an indispensable step in their maturation, Wnts are palmitoleated immediately after synthesis. This lipid modification is essential for Wnts to be transported and biologically active, but it also renders them highly hydrophobic. This makes all Wnts highly dependent on carrier proteins and specialized cellular structures both for intra- and inter-cellular movement. How this complex machinery acts in concert to deliver its highly important payload from the place of synthesis to the correct site of delivery is under active investigation. Here, we review the current understanding of how lipid-modified Wnts are processed, transported, and guided to their place of action.


Subject(s)
Wnt Proteins , Wnt Signaling Pathway , Body Patterning/genetics , Cell Movement , Lipids , Wnt Proteins/metabolism , Wnt Signaling Pathway/physiology
9.
Front Mol Biosci ; 9: 911764, 2022.
Article in English | MEDLINE | ID: mdl-35720131

ABSTRACT

Biological systems operate in constant communication through shared components and feedback from changes in the environment. Casein kinase 1 (CK1) is a family of protein kinases that functions in diverse biological pathways and its regulation is beginning to be understood. The several isoforms of CK1 take part in key steps of processes including protein translation, cell-cell interactions, synaptic dopaminergic signaling and circadian rhythms. While CK1 mutations are rarely the primary drivers of disease, the kinases are often found to play an accessory role in metabolic disorders and cancers. In these settings, the dysregulation of CK1 coincides with increased disease severity. Among kinases, CK1 is unique in that its substrate specificity changes dramatically with its own phosphorylation state. Understanding the process that governs CK1 substrate selection is thus useful in identifying its role in various ailments. An illustrative example is the PERIOD2 (PER2) phosphoswitch, where CK1δ/ε kinase activity can be varied between three different substrate motifs to regulate the circadian clock.

10.
J Clin Invest ; 132(12)2022 06 15.
Article in English | MEDLINE | ID: mdl-35536676

ABSTRACT

Wnt signaling regulates the balance between stemness and differentiation in multiple tissues and in cancer. RNF43-mutant pancreatic cancers are dependent on Wnt production, and pharmacologic blockade of the pathway, e.g., by PORCN inhibitors, leads to tumor differentiation. However, primary resistance to these inhibitors has been observed. To elucidate potential mechanisms, we performed in vivo CRISPR screens in PORCN inhibitor-sensitive RNF43-mutant pancreatic cancer xenografts. As expected, genes in the Wnt pathway whose loss conferred drug resistance were identified, including APC, AXIN1, and CTNNBIP1. Unexpectedly, the screen also identified the histone acetyltransferase EP300 (p300), but not its paralog, CREBBP (CBP). We found that EP300 is silenced due to genetic alterations in all the existing RNF43-mutant pancreatic cancer cell lines that are resistant to PORCN inhibitors. Mechanistically, loss of EP300 directly downregulated GATA6 expression, thereby silencing the GATA6-regulated differentiation program and leading to a phenotypic transition from the classical subtype to the dedifferentiated basal-like/squamous subtype of pancreatic cancer. EP300 mutation and loss of GATA6 function bypassed the antidifferentiation activity of Wnt signaling, rendering these cancer cells resistant to Wnt inhibition.


Subject(s)
Pancreatic Neoplasms , Acyltransferases/genetics , Cell Line, Tumor , E1A-Associated p300 Protein/metabolism , GATA6 Transcription Factor/genetics , GATA6 Transcription Factor/metabolism , Humans , Membrane Proteins/genetics , Mutation , Pancreatic Neoplasms/pathology , Wnt Signaling Pathway , Pancreatic Neoplasms
11.
Biochem Pharmacol ; 196: 114611, 2022 02.
Article in English | MEDLINE | ID: mdl-34010597

ABSTRACT

Cholesterol biosynthesis, primarily associated with eukaryotes, occurs as an essential component of human metabolism with biosynthetic deregulation a factor in cancer viability. The segment that partitions between squalene and the C27-end cholesterol yields the main cholesterogenesis branch subdivided into the Bloch and Kandutsch-Russell pathways. Their importance in cell viability, in normal growth and development originates primarily from the amphipathic property and shape of the cholesterol molecule which makes it suitable as a membrane insert. Cholesterol can also convert to variant oxygenated product metabolites of distinct function producing a complex interplay between cholesterol synthesis and overall steroidogenesis. In this review, we disassociate the two sides of cholesterogenesisis affecting the type and amounts of systemic sterols-one which is beneficial to human welfare while the other dysfunctional leading to misery and disease that could result in premature death. Our focus here is first to examine the cholesterol biosynthetic genes, enzymes, and order of biosynthetic intermediates in human cholesterogenesis pathways, then compare the effect of proximal and distal inhibitors of cholesterol biosynthesis against normal and cancer cell growth and metabolism. Collectively, the inhibitor studies of druggable enzymes and specific biosynthetic steps, suggest a potential role of disrupted cholesterol biosynthesis, in coordination with imported cholesterol, as a factor in cancer development and as discussed some of these inhibitors have chemotherapeutic implications.


Subject(s)
Anticholesteremic Agents/therapeutic use , Antineoplastic Agents/therapeutic use , Cholesterol/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Animals , Benzylamines/pharmacology , Benzylamines/therapeutic use , Humans , Lanosterol/analogs & derivatives , Lanosterol/pharmacology , Lanosterol/therapeutic use , Terbinafine/pharmacology , Terbinafine/therapeutic use , Thiophenes/pharmacology , Thiophenes/therapeutic use
12.
J Cell Sci ; 134(24)2021 12 15.
Article in English | MEDLINE | ID: mdl-34817055

ABSTRACT

Wnt signaling is essential for normal development and is a therapeutic target in cancer. The enzyme PORCN, or porcupine, is a membrane-bound O-acyltransferase (MBOAT) that is required for the post-translational modification of all Wnts, adding an essential mono-unsaturated palmitoleic acid to a serine on the tip of Wnt hairpin 2. Inherited mutations in PORCN cause focal dermal hypoplasia, and therapeutic inhibition of PORCN slows the growth of Wnt-dependent cancers. Based on homology to mammalian MBOAT proteins, we developed and validated a structural model of human PORCN. The model accommodates palmitoleoyl-CoA and Wnt hairpin 2 in two tunnels in the conserved catalytic core, shedding light on the catalytic mechanism. The model predicts how previously uncharacterized human variants of uncertain significance can alter PORCN function. Drugs including ETC-159, IWP-L6 and LGK-974 dock in the PORCN catalytic site, providing insights into PORCN pharmacologic inhibition. This structural model enhances our mechanistic understanding of PORCN substrate recognition and catalysis, as well as the inhibition of its enzymatic activity, and can facilitate the development of improved inhibitors and the understanding of disease-relevant PORCN mutants. This article has an associated First Person interview with the joint first authors of the paper.


Subject(s)
Focal Dermal Hypoplasia , Pharmaceutical Preparations , Acyltransferases/genetics , Animals , Catalytic Domain , Humans , Membrane Proteins/genetics , Models, Structural
13.
N Engl J Med ; 385(14): 1292-1301, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34587386

ABSTRACT

BACKGROUND: Structural birth defects occur in approximately 3% of live births; most such defects lack defined genetic or environmental causes. Despite advances in surgical approaches, pharmacologic prevention remains largely out of reach. METHODS: We queried worldwide databases of 20,248 families that included children with neurodevelopmental disorders and that were enriched for parental consanguinity. Approximately one third of affected children in these families presented with structural birth defects or microcephaly. We performed exome or genome sequencing of samples obtained from the children, their parents, or both to identify genes with biallelic pathogenic or likely pathogenic mutations present in more than one family. After identifying disease-causing variants, we generated two mouse models, each with a pathogenic variant "knocked in," to study mechanisms and test candidate treatments. We administered a small-molecule Wnt agonist to pregnant animals and assessed their offspring. RESULTS: We identified homozygous mutations in WLS, which encodes the Wnt ligand secretion mediator (also known as Wntless or WLS) in 10 affected persons from 5 unrelated families. (The Wnt ligand secretion mediator is essential for the secretion of all Wnt proteins.) Patients had multiorgan defects, including microcephaly and facial dysmorphism as well as foot syndactyly, renal agenesis, alopecia, iris coloboma, and heart defects. The mutations affected WLS protein stability and Wnt signaling. Knock-in mice showed tissue and cell vulnerability consistent with Wnt-signaling intensity and individual and collective functions of Wnts in embryogenesis. Administration of a pharmacologic Wnt agonist partially restored embryonic development. CONCLUSIONS: Genetic variations affecting a central Wnt regulator caused syndromic structural birth defects. Results from mouse models suggest that what we have named Zaki syndrome is a potentially preventable disorder. (Funded by the National Institutes of Health and others.).


Subject(s)
Abnormalities, Multiple/genetics , Congenital Abnormalities/genetics , Genetic Pleiotropy , Intracellular Signaling Peptides and Proteins/genetics , Mutation , Receptors, G-Protein-Coupled/genetics , Wnt Proteins/metabolism , Animals , Disease Models, Animal , Fibroblasts/metabolism , Gene Knock-In Techniques , Genes, Recessive , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Mice, Transgenic , Pedigree , Phenotype , Receptors, G-Protein-Coupled/metabolism , Syndrome , Wnt Signaling Pathway
14.
Front Endocrinol (Lausanne) ; 12: 667480, 2021.
Article in English | MEDLINE | ID: mdl-34108937

ABSTRACT

Wnt signaling plays a critical role in bone formation, homeostasis, and injury repair. Multiple cell types in bone have been proposed to produce the Wnts required for these processes. The specific role of Wnts produced from cells of hematopoietic origin has not been previously characterized. Here, we examined if hematopoietic Wnts play a role in physiological musculoskeletal development and in fracture healing. Wnt secretion from hematopoietic cells was blocked by genetic knockout of the essential Wnt modifying enzyme PORCN, achieved by crossing Vav-Cre transgenic mice with Porcnflox mice. Knockout mice were compared with their wild-type littermates for musculoskeletal development including bone quantity and quality at maturation. Fracture healing including callus quality and quantity was assessed in a diaphyseal fracture model using quantitative micro computer-assisted tomographic scans, histological analysis, as well as biomechanical torsional and 4-point bending stress tests. The hematopoietic Porcn knockout mice had normal musculoskeletal development, with normal bone quantity and quality on micro-CT scans of the vertebrae. They also had normal gross skeletal dimensions and normal bone strength. Hematopoietic Wnt depletion in the healing fracture resulted in fewer osteoclasts in the fracture callus, with a resultant delay in callus remodeling. All calluses eventually progressed to full maturation. Hematopoietic Wnts, while not essential, modulate osteoclast numbers during fracture healing. These osteoclasts participate in callus maturation and remodeling. This demonstrates the importance of diverse Wnt sources in bone repair.


Subject(s)
Acyltransferases/physiology , Bony Callus/cytology , Fracture Healing , Membrane Proteins/physiology , Osteoclasts/cytology , Osteogenesis , Wnt Signaling Pathway , Animals , Biomechanical Phenomena , Bony Callus/metabolism , Female , Male , Mice , Mice, Knockout , Osteoclasts/metabolism
15.
Nat Commun ; 12(1): 2058, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33824332

ABSTRACT

Wnt signaling regulates cell proliferation and cell differentiation as well as migration and polarity during development. However, it is still unclear how the Wnt ligand distribution is precisely controlled to fulfil these functions. Here, we show that the planar cell polarity protein Vangl2 regulates the distribution of Wnt by cytonemes. In zebrafish epiblast cells, mouse intestinal telocytes and human gastric cancer cells, Vangl2 activation generates extremely long cytonemes, which branch and deliver Wnt protein to multiple cells. The Vangl2-activated cytonemes increase Wnt/ß-catenin signaling in the surrounding cells. Concordantly, Vangl2 inhibition causes fewer and shorter cytonemes to be formed and reduces paracrine Wnt/ß-catenin signaling. A mathematical model simulating these Vangl2 functions on cytonemes in zebrafish gastrulation predicts a shift of the signaling gradient, altered tissue patterning, and a loss of tissue domain sharpness. We confirmed these predictions during anteroposterior patterning in the zebrafish neural plate. In summary, we demonstrate that Vangl2 is fundamental to paracrine Wnt/ß-catenin signaling by controlling cytoneme behaviour.


Subject(s)
Membrane Proteins/metabolism , Pseudopodia/metabolism , Wnt Signaling Pathway , Animals , Animals, Genetically Modified , Body Patterning , Embryo, Nonmammalian/metabolism , Enzyme Activation , Fibroblasts/metabolism , Gastrulation , HEK293 Cells , Humans , JNK Mitogen-Activated Protein Kinases/metabolism , Mice, Inbred C57BL , Neural Plate/embryology , Neural Plate/metabolism , Neurogenesis , Paracrine Communication , Systems Analysis , Telocytes/metabolism , Zebrafish/embryology , Zebrafish/metabolism
16.
Life Sci Alliance ; 4(5)2021 05.
Article in English | MEDLINE | ID: mdl-33653688

ABSTRACT

The huge cadre of genes regulated by Myc has obstructed the identification of critical effectors that are essential for Myc-driven tumorigenesis. Here, we describe how only the lack of the receptor Fzd9, previously identified as a Myc transcriptional target, impairs sustained tumor expansion and ß-cell dedifferentiation in a mouse model of Myc-driven insulinoma, allows pancreatic islets to maintain their physiological structure and affects Myc-related global gene expression. Importantly, Wnt signaling inhibition in Fzd9-competent mice largely recapitulates the suppression of proliferation caused by Fzd9 deficiency upon Myc activation. Together, our results indicate that the Wnt signaling receptor Fzd9 is essential for Myc-induced tumorigenesis in pancreatic islets.


Subject(s)
Adenoma, Islet Cell/physiopathology , Carcinogenesis/metabolism , Frizzled Receptors/metabolism , Adenoma, Islet Cell/metabolism , Animals , Cell Movement , Cell Proliferation , Female , Frizzled Receptors/genetics , Frizzled Receptors/physiology , Genes, myc/genetics , Genes, myc/physiology , Islets of Langerhans/metabolism , Male , Mice , Wnt Signaling Pathway/genetics , Wnt Signaling Pathway/physiology , beta Catenin/metabolism
17.
EMBO Mol Med ; 13(4): e13349, 2021 04 09.
Article in English | MEDLINE | ID: mdl-33660437

ABSTRACT

Wnt signaling maintains diverse adult stem cell compartments and is implicated in chemotherapy resistance in cancer. PORCN inhibitors that block Wnt secretion have proven effective in Wnt-addicted preclinical cancer models and are in clinical trials. In a survey for potential combination therapies, we found that Wnt inhibition synergizes with the PARP inhibitor olaparib in Wnt-addicted cancers. Mechanistically, we find that multiple genes in the homologous recombination and Fanconi anemia repair pathways, including BRCA1, FANCD2, and RAD51, are dependent on Wnt/ß-catenin signaling in Wnt-high cancers, and treatment with a PORCN inhibitor creates a BRCA-like state. This coherent regulation of DNA repair genes occurs in part via a Wnt/ß-catenin/MYBL2 axis. Importantly, this pathway also functions in intestinal crypts, where high expression of BRCA and Fanconi anemia genes is seen in intestinal stem cells, with further upregulation in Wnt-high APCmin mutant polyps. Our findings suggest a general paradigm that Wnt/ß-catenin signaling enhances DNA repair in stem cells and cancers to maintain genomic integrity. Conversely, interventions that block Wnt signaling may sensitize cancers to radiation and other DNA damaging agents.


Subject(s)
Antineoplastic Agents , Neoplasms , Antineoplastic Agents/pharmacology , Cell Line, Tumor , DNA Repair , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Wnt Signaling Pathway
18.
Endocr Relat Cancer ; 28(4): R95-R110, 2021 04.
Article in English | MEDLINE | ID: mdl-33638942

ABSTRACT

Circadian rhythms regulate a vast array of physiological and cellular processes, as well as the hormonal milieu, to keep our cells synchronised to the light-darkness cycle. Epidemiologic studies have implicated circadian disruption in the development of breast and other cancers, and numerous clock genes are dysregulated in human tumours. Here we review the evidence that circadian rhythms, when altered at the molecular level, influence cancer growth. We also note some common pitfalls in circadian-cancer research and how they might be avoided to maximise comparable results and minimise misleading data. Studies of circadian gene mutant mice, and human cancer models in vitro and in vivo, demonstrate that clock genes can impact tumourigenesis. Clock genes influence important cancer-related pathways, ranging from p53-mediated apoptosis to cell cycle progression. Confusingly, clock dysfunction can be both pro- or anti-tumourigenic in a model and cell type-specific manner. Due to this duality, there is no canonical mechanism for clock interaction with tumourigenic pathways. To understand the role of the circadian clock in patients' tumours requires analysis of the molecular clock status compared to healthy tissue. Novel mathematical approaches are under development, but this remains largely aspirational, and is hampered by a lack of temporal information in publicly available datasets. Current evidence broadly supports the notion that the circadian clock is important for cancer biology. More work is necessary to develop an overarching model of this connection. Future studies would do well to analyse the clock network in addition to alterations in single clock genes.


Subject(s)
Circadian Clocks , Neoplasms , Animals , Carcinogenesis/genetics , Cell Transformation, Neoplastic/genetics , Circadian Clocks/genetics , Circadian Rhythm/physiology , Humans , Mice , Neoplasms/genetics , Tumor Suppressor Protein p53/genetics
19.
Mol Cell ; 81(6): 1133-1146, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33545069

ABSTRACT

In our 24/7 well-lit world, it's easy to skip or delay sleep to work, study, and play. However, our circadian rhythms are not easily fooled; the consequences of jet lag and shift work are many and severe, including metabolic, mood, and malignant disorders. The internal clock that keeps track of time has at its heart the reversible phosphorylation of the PERIOD proteins, regulated by isoforms of casein kinase 1 (CK1). In-depth biochemical, genetic, and structural studies of these kinases, their mutants, and their splice variants have combined over the past several years to provide a robust understanding of how the core clock is regulated by a phosphoswitch whereby phosphorylation of a stabilizing site on PER blocks phosphorylation of a distant phosphodegron. The recent structure of a circadian mutant form of CK1 implicates an internal activation loop switch that regulates this phosphoswitch and points to new approaches to regulation of the clock.


Subject(s)
Casein Kinase I/metabolism , Circadian Clocks/physiology , Circadian Rhythm/physiology , Period Circadian Proteins/metabolism , Animals , Casein Kinase I/genetics , Humans , Period Circadian Proteins/genetics , Phosphorylation/physiology
20.
Cancer Res ; 81(2): 464-475, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33203702

ABSTRACT

Aberrant Wnt signaling drives a number of cancers through regulation of diverse downstream pathways. Wnt/ß-catenin signaling achieves this in part by increasing the expression of proto-oncogenes such as MYC and cyclins. However, global assessment of the Wnt-regulated transcriptome in vivo in genetically distinct cancers demonstrates that Wnt signaling suppresses the expression of as many genes as it activates. In this study, we examined the set of genes that are upregulated upon inhibition of Wnt signaling in Wnt-addicted pancreatic and colorectal cancer models. Decreasing Wnt signaling led to a marked increase in gene expression by activating ERK and JNK; these changes in gene expression could be mitigated in part by concurrent inhibition of MEK. These findings demonstrate that increased Wnt signaling in cancer represses MAPK activity, preventing RAS-mediated senescence while allowing cancer cells to proliferate. These results shift the paradigm from Wnt/ß-catenin primarily as an activator of transcription to a more nuanced view where Wnt/ß-catenin signaling drives both widespread gene repression and activation. SIGNIFICANCE: These findings show that Wnt/ß-catenin signaling causes widespread gene repression via inhibition of MAPK signaling, thus fine tuning the RAS-MAPK pathway to optimize proliferation in cancer.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma, Pancreatic Ductal/pathology , Gene Expression Regulation, Neoplastic , Mitogen-Activated Protein Kinases/metabolism , Pancreatic Neoplasms/pathology , Wnt1 Protein/metabolism , beta Catenin/metabolism , Animals , Antineoplastic Agents/pharmacology , Apoptosis , Biomarkers, Tumor/genetics , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/metabolism , Cell Proliferation , Heterocyclic Compounds, 4 or More Rings/pharmacology , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Mitogen-Activated Protein Kinases/genetics , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Pyridones/pharmacology , Pyrimidinones/pharmacology , Tumor Cells, Cultured , Wnt1 Protein/genetics , Xenograft Model Antitumor Assays , beta Catenin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...