Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Med Phys ; 42(9): 5084-99, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26328960

ABSTRACT

PURPOSE: Electronic portal imagers (EPIDs) with high detective quantum efficiencies (DQEs) are sought to facilitate the use of the megavoltage (MV) radiotherapy treatment beam for image guidance. Potential advantages include high quality (treatment) beam's eye view imaging, and improved cone-beam computed tomography (CBCT) generating images with more accurate electron density maps with immunity to metal artifacts. One approach to increasing detector sensitivity is to couple a thick pixelated scintillator array to an active matrix flat panel imager (AMFPI) incorporating amorphous silicon thin film electronics. Cadmium tungstate (CWO) has many desirable scintillation properties including good light output, a high index of refraction, high optical transparency, and reasonable cost. However, due to the 0 1 0 cleave plane inherent in its crystalline structure, the difficulty of cutting and polishing CWO has, in part, limited its study relative to other scintillators such as cesium iodide and bismuth germanate (BGO). The goal of this work was to build and test a focused large-area pixelated "strip" CWO detector. METHODS: A 361 × 52 mm scintillator assembly that contained a total of 28 072 pixels was constructed. The assembly comprised seven subarrays, each 15 mm thick. Six of the subarrays were fabricated from CWO with a pixel pitch of 0.784 mm, while one array was constructed from BGO for comparison. Focusing was achieved by coupling the arrays to the Varian AS1000 AMFPI through a piecewise linear arc-shaped fiber optic plate. Simulation and experimental studies of modulation transfer function (MTF) and DQE were undertaken using a 6 MV beam, and comparisons were made between the performance of the pixelated strip assembly and the most common EPID configuration comprising a 1 mm-thick copper build-up plate attached to a 133 mg/cm(2) gadolinium oxysulfide scintillator screen (Cu-GOS). Projection radiographs and CBCT images of phantoms were acquired. The work also introduces the use of a lightweight edge phantom to generate MTF measurements at MV energies and shows its functional equivalence to the more cumbersome slit-based method. RESULTS: Measured and simulated DQE(0)'s of the pixelated CWO detector were 22% and 26%, respectively. The average measured and simulated ratios of CWO DQE(f) to Cu-GOS DQE(f) across the frequency range of 0.0-0.62 mm(-1) were 23 and 29, respectively. 2D and 3D imaging studies confirmed the large dose efficiency improvement and that focus was maintained across the field of view. In the CWO CBCT images, the measured spatial resolution was 7 lp/cm. The contrast-to-noise ratio was dramatically improved reflecting a 22 × sensitivity increase relative to Cu-GOS. The CWO scintillator material showed significantly higher stability and light yield than the BGO material. CONCLUSIONS: An efficient piecewise-focused pixelated strip scintillator for MV imaging is described that offers more than a 20-fold dose efficiency improvement over Cu-GOS.


Subject(s)
Cone-Beam Computed Tomography/instrumentation , Electrical Equipment and Supplies , Radiotherapy, Image-Guided , Radiotherapy, Intensity-Modulated , Scintillation Counting
2.
Med Phys ; 39(10): 6035-47, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23039642

ABSTRACT

PURPOSE: Detector lag, or residual signal, in a-Si flat-panel (FP) detectors can cause significant shading artifacts in cone-beam computed tomography reconstructions. To date, most correction models have assumed a linear, time-invariant (LTI) model and correct lag by deconvolution with an impulse response function (IRF). However, the lag correction is sensitive to both the exposure intensity and the technique used for determining the IRF. Even when the LTI correction that produces the minimum error is found, residual artifact remains. A new non-LTI method was developed to take into account the IRF measurement technique and exposure dependencies. METHODS: First, a multiexponential (N = 4) LTI model was implemented for lag correction. Next, a non-LTI lag correction, known as the nonlinear consistent stored charge (NLCSC) method, was developed based on the LTI multiexponential method. It differs from other nonlinear lag correction algorithms in that it maintains a consistent estimate of the amount of charge stored in the FP and it does not require intimate knowledge of the semiconductor parameters specific to the FP. For the NLCSC method, all coefficients of the IRF are functions of exposure intensity. Another nonlinear lag correction method that only used an intensity weighting of the IRF was also compared. The correction algorithms were applied to step-response projection data and CT acquisitions of a large pelvic phantom and an acrylic head phantom. The authors collected rising and falling edge step-response data on a Varian 4030CB a-Si FP detector operating in dynamic gain mode at 15 fps at nine incident exposures (2.0%-92% of the detector saturation exposure). For projection data, 1st and 50th frame lag were measured before and after correction. For the CT reconstructions, five pairs of ROIs were defined and the maximum and mean signal differences within a pair were calculated for the different exposures and step-response edge techniques. RESULTS: The LTI corrections left residual 1st and 50th frame lag up to 1.4% and 0.48%, while the NLCSC lag correction reduced 1st and 50th frame residual lags to less than 0.29% and 0.0052%. For CT reconstructions, the NLCSC lag correction gave an average error of 11 HU for the pelvic phantom and 3 HU for the head phantom, compared to 14-19 HU and 2-11 HU for the LTI corrections and 15 HU and 9 HU for the intensity weighted non-LTI algorithm. The maximum ROI error was always smallest for the NLCSC correction. The NLCSC correction was also superior to the intensity weighting algorithm. CONCLUSIONS: The NLCSC lag algorithm corrected for the exposure dependence of lag, provided superior image improvement for the pelvic phantom reconstruction, and gave similar results to the best case LTI results for the head phantom. The blurred ring artifact that is left over in the LTI corrections was better removed by the NLCSC correction in all cases.


Subject(s)
Algorithms , Cone-Beam Computed Tomography/methods , Nonlinear Dynamics , Silicon , Calibration
3.
Phys Med Biol ; 57(13): 4095-115, 2012 Jul 07.
Article in English | MEDLINE | ID: mdl-22678123

ABSTRACT

The purpose of this study was to analyze factors affecting proton stopping-power-ratio (SPR) estimations and range uncertainties in proton therapy planning using the standard stoichiometric calibration. The SPR uncertainties were grouped into five categories according to their origins and then estimated based on previously published reports or measurements. For the first time, the impact of tissue composition variations on SPR estimation was assessed and the uncertainty estimates of each category were determined for low-density (lung), soft, and high-density (bone) tissues. A composite, 95th percentile water-equivalent-thickness uncertainty was calculated from multiple beam directions in 15 patients with various types of cancer undergoing proton therapy. The SPR uncertainties (1σ) were quite different (ranging from 1.6% to 5.0%) in different tissue groups, although the final combined uncertainty (95th percentile) for different treatment sites was fairly consistent at 3.0-3.4%, primarily because soft tissue is the dominant tissue type in the human body. The dominant contributing factor for uncertainties in soft tissues was the degeneracy of Hounsfield numbers in the presence of tissue composition variations. To reduce the overall uncertainties in SPR estimation, the use of dual-energy computed tomography is suggested. The values recommended in this study based on typical treatment sites and a small group of patients roughly agree with the commonly referenced value (3.5%) used for margin design. By using tissue-specific range uncertainties, one could estimate the beam-specific range margin by accounting for different types and amounts of tissues along a beam, which may allow for customization of range uncertainty for each beam direction.


Subject(s)
Proton Therapy , Radiotherapy Planning, Computer-Assisted/methods , Uncertainty , Calibration , Humans , Male , Neoplasms/diagnostic imaging , Neoplasms/radiotherapy , Phantoms, Imaging , Tomography, X-Ray Computed
4.
Med Phys ; 38(5): 2398-411, 2011 May.
Article in English | MEDLINE | ID: mdl-21776774

ABSTRACT

PURPOSE: Detector lag, or residual signal, in amorphous silicon (a-Si) flat-panel (FP) detectors can cause significant shading artifacts in cone-beam computed tomography (CBCT) reconstructions. To date, most correction models have assumed a linear, time-invariant (LTI) model and lag is corrected by deconvolution with an impulse response function (IRF). However, there are many ways to determine the IRF. The purpose of this work is to better understand detector lag in the Varian 4030CB FP and to identify the IRF measurement technique that best removes the CBCT shading artifact. METHODS: We investigated the linearity of lag in a Varian 4030CB a-Si FP operating in dynamic gain mode at 15 frames per second by examining the rising step-response function (RSRF) followed by the falling step-response function (FSRF) at ten incident exposures (0.5%-84% of a-Si FP saturation exposure). We implemented a multiexponential (N = 4) LTI model for lag correction and investigated the effects of various techniques for determining the IRF such as RSRF versus FSRF, exposure intensity, length of exposure, and spatial position. The resulting IRFs were applied to (1) the step-response projection data and (2) CBCT acquisitions of a large pelvic phantom and acrylic head phantom. For projection data, 1st and 50th frame lags were measured pre- and postcorrection. For the CBCT reconstructions, four pairs of ROIs were defined and the maximum and mean errors within each pair were calculated for the different exposures and step-response edge techniques. RESULTS: A nonlinearity greater than 50% was observed in the FSRF data. A model calibrated with RSRF data resulted in overcorrection of FSRF data. Conversely, models calibrated with FSRF data applied to RSRF data resulted in undercorrection of the RSRF. Similar effects were seen when LTI models were applied to data collected at different incident exposures. Some spatial variation in lag was observed in the step-response data. For CBCT reconstructions, an average error range of 3-21 HU was observed when using IRFs from different techniques. For our phantoms and FP, the lowest average error occurred for the FSRF-based techniques at exposures of 1.6 or 3.4% a-Si FP saturation, depending on the phantom used. CONCLUSIONS: The choice of step-response edge (RSRF versus FSRF) and exposure intensity for IRF calibration could leave large residual lag in the step-response data. For the CBCT reconstructions, IRFs derived from FSRF data at low exposure intensities (1.6 and 3.4%) best removed the CBCT shading artifact. Which IRF to use for lag correction could be selected based on the object size.


Subject(s)
Algorithms , Artifacts , Radiographic Image Enhancement/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Computer Simulation , Humans , Linear Models , Radar , Reproducibility of Results , Sensitivity and Specificity
5.
Med Phys ; 38(4): 2058-73, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21626939

ABSTRACT

PURPOSE: In image-guided radiotherapy, an artifact typically seen in axial slices of x-ray cone-beam computed tomography (CBCT) reconstructions is a dark region or "black hole" situated below the scan isocenter. The authors trace the cause of the artifact to scattered radiation produced by radiotherapy patient tabletops and show it is linked to the use of the offset-detector acquisition mode to enlarge the imaging field-of-view. The authors present a hybrid scatter kernel superposition (SKS) algorithm to correct for scatter from both the object-of-interest and the tabletop. METHODS: Monte Carlo simulations and phantom experiments were first performed to identify the source of the black hole artifact. For correction, a SKS algorithm was developed that uses separate kernels to estimate scatter from the patient tabletop and the object-of-interest. Each projection is divided into two regions, one defined by the shadow cast by the tabletop on the imager and one defined by the unshadowed region. The region not shadowed by the tabletop is processed using the recently developed fast adaptive scatter kernel superposition (fASKS) method which employs asymmetric kernels that best model scatter transport through bodylike objects. The shadowed region is convolved with a combination of slab-derived symmetric SKS kernels and asymmetric fASKS kernels. The composition of the hybrid kernels is projection-angle-dependent. To test the algorithm, pelvis phantom and in vivo data were acquired using a CBCT test stand, a Varian Acuity simulator, and a Varian On-Board Imager, all of which have similar geometries and components. Artifact intensities and Hounsfield unit (HU) accuracies in the reconstructions were assessed before and after the correction. RESULTS: The hybrid kernel algorithm provided effective correction and produced substantially better scatter estimates than the symmetric SKS or asymmetric fASKS methods alone. HU nonuniformities in the reconstructed pelvis phantom were reduced from 220 to 50 HU (i.e., 22%-5%). In the in vivo scans, the black hole artifact was reduced by up to 147 HU, a 73% improvement, and anatomical details in the prostate and rectum areas were made considerably more visible. CONCLUSIONS: Radiotherapy tabletops, which are generally flatter and larger than those used for diagnostic CT, can produce significant scatter-related artifacts. The proposed hybrid SKS algorithm accurately estimates scatter from both the object-of-interest and the patient tabletop, and resulting image uniformities and HU accuracies are greatly improved.


Subject(s)
Artifacts , Cone-Beam Computed Tomography/methods , Image Processing, Computer-Assisted/methods , Radiotherapy/instrumentation , Scattering, Radiation , Humans , Monte Carlo Method , Pelvis/diagnostic imaging , Phantoms, Imaging
6.
Med Phys ; 35(5): 1932-41, 2008 May.
Article in English | MEDLINE | ID: mdl-18561669

ABSTRACT

The goal of this study was to evaluate the improvement in electron density measurement and metal artifact reduction using orthovoltage computed tomography (OVCT) imaging compared with conventional kilovoltage CT (KVCT). For this study, a bench-top system was constructed with adjustable x-ray tube voltage up to 320 kVp. A commercial tissue-characterization phantom loaded with inserts of various human tissue substitutes was imaged using 125 kVp (KVCT) and 320 kVp (OVCT) x rays. Stoichiometric calibration was performed for both KVCT and OVCT imaging using the Schneider method. The metal inserts-titanium rods and aluminum rods-were used to study the impact of metal artifacts on the electron-density measurements both inside and outside the metal inserts. It was found that the relationships between Hounsfield units and relative electron densities (to water) were more predictable for OVCT than KVCT. Unlike KVCT, the stoichiometric calibration for OVCT was insensitive to the use of tissue substitutes for direct electron density calibration. OVCT was found to significantly reduce metal streak artifacts. Errors in electron-density measurements within uniform tissue substitutes were reduced from 42% (maximum) and 18% (root-mean-square) in KVCT to 12% and 2% in OVCT, respectively. Improvements were also observed inside the metal implants. For the detectors optimized for KVCT, the imaging dose is almost doubled for OVCT for the image quality comparable to KVCT. OVCT may be a good option for high-precision radiotherapy treatment planning, especially for patients with metal implants and especially for charged particle therapy, such as proton therapy.


Subject(s)
Electrons , Image Processing, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Aluminum/chemistry , Artifacts , Calibration , Equipment Design , Humans , Image Processing, Computer-Assisted/instrumentation , Metals/chemistry , Models, Statistical , Phantoms, Imaging , Protons , Radiotherapy Planning, Computer-Assisted , Reproducibility of Results , Titanium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...