Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
SLAS Discov ; 29(5): 100165, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38797286

ABSTRACT

We report the development of a 384-well formatted NanoBRET assay to characterize molecular glues of 14-3-3/client interactions in living cells. The seven isoforms of 14-3-3 are dimeric hub proteins with diverse roles including transcription factor regulation and signal transduction. 14-3-3 interacts with hundreds of client proteins to regulate their function and is therefore an ideal therapeutic target when client selectivity can be achieved. We have developed the NanoBRET system for three 14-3-3σ client proteins CRAF, TAZ, and estrogen receptor α (ERα), which represent three specific binding modes. We have measured stabilization of 14-3-3σ/client complexes by molecular glues with EC50 values between 100 nM and 1 µM in cells, which align with the EC50 values calculated by fluorescence anisotropy in vitro. Developing this NanoBRET system for the hub protein 14-3-3σ allows for a streamlined approach, bypassing multiple optimization steps in the assay development process for other 14-3-3σ clients. The NanoBRET system allows for an assessment of PPI stabilization in a more physiologically relevant, cell-based environment using full-length proteins. The method is applicable to diverse protein-protein interactions (PPIs) and offers a robust platform to explore libraries of compounds for both PPI stabilizers and inhibitors.

2.
ACS Cent Sci ; 9(5): 937-946, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37252362

ABSTRACT

Dysregulation of protein-protein interactions (PPIs) commonly leads to disease. PPI stabilization has only recently been systematically explored for drug discovery despite being a powerful approach to selectively target intrinsically disordered proteins and hub proteins, like 14-3-3, with multiple interaction partners. Disulfide tethering is a site-directed fragment-based drug discovery (FBDD) methodology for identifying reversibly covalent small molecules. We explored the scope of disulfide tethering for the discovery of selective PPI stabilizers (molecular glues) using the hub protein 14-3-3σ. We screened complexes of 14-3-3 with 5 biologically and structurally diverse phosphopeptides derived from the 14-3-3 client proteins ERα, FOXO1, C-RAF, USP8, and SOS1. Stabilizing fragments were found for 4/5 client complexes. Structural elucidation of these complexes revealed the ability of some peptides to conformationally adapt to make productive interactions with the tethered fragments. We validated eight fragment stabilizers, six of which showed selectivity for one phosphopeptide client, and structurally characterized two nonselective hits and four fragments that selectively stabilized C-RAF or FOXO1. The most efficacious fragment increased 14-3-3σ/C-RAF phosphopeptide affinity by 430-fold. Disulfide tethering to the wildtype C38 in 14-3-3σ provided diverse structures for future optimization of 14-3-3/client stabilizers and highlighted a systematic method to discover molecular glues.

3.
RNA ; 26(10): 1400-1413, 2020 10.
Article in English | MEDLINE | ID: mdl-32518066

ABSTRACT

Eukaryotes possess eight highly conserved Lsm (like Sm) proteins that assemble into circular, heteroheptameric complexes, bind RNA, and direct a diverse range of biological processes. Among the many essential functions of Lsm proteins, the cytoplasmic Lsm1-7 complex initiates mRNA decay, while the nuclear Lsm2-8 complex acts as a chaperone for U6 spliceosomal RNA. It has been unclear how these complexes perform their distinct functions while differing by only one out of seven subunits. Here, we elucidate the molecular basis for Lsm-RNA recognition and present four high-resolution structures of Lsm complexes bound to RNAs. The structures of Lsm2-8 bound to RNA identify the unique 2',3' cyclic phosphate end of U6 as a prime determinant of specificity. In contrast, the Lsm1-7 complex strongly discriminates against cyclic phosphates and tightly binds to oligouridylate tracts with terminal purines. Lsm5 uniquely recognizes purine bases, explaining its divergent sequence relative to other Lsm subunits. Lsm1-7 loads onto RNA from the 3' end and removal of the Lsm1 carboxy-terminal region allows Lsm1-7 to scan along RNA, suggesting a gated mechanism for accessing internal binding sites. These data reveal the molecular basis for RNA binding by Lsm proteins, a fundamental step in the formation of molecular assemblies that are central to eukaryotic mRNA metabolism.


Subject(s)
RNA Stability/genetics , RNA-Binding Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics , Binding Sites/genetics , Protein Binding/genetics , RNA/genetics , RNA Cap-Binding Proteins/genetics , RNA Splicing/genetics , RNA, Messenger/genetics , RNA, Small Nuclear/genetics , Ribonucleoproteins, Small Nuclear/genetics , Saccharomyces cerevisiae/genetics , Spliceosomes/genetics
4.
Nucleic Acids Res ; 48(3): 1423-1434, 2020 02 20.
Article in English | MEDLINE | ID: mdl-31832688

ABSTRACT

U6 snRNA undergoes post-transcriptional 3' end modification prior to incorporation into the active site of spliceosomes. The responsible exoribonuclease is Usb1, which removes nucleotides from the 3' end of U6 and, in humans, leaves a 2',3' cyclic phosphate that is recognized by the Lsm2-8 complex. Saccharomycescerevisiae Usb1 has additional 2',3' cyclic phosphodiesterase (CPDase) activity, which converts the cyclic phosphate into a 3' phosphate group. Here we investigate the molecular basis for the evolution of Usb1 CPDase activity. We examine the structure and function of Usb1 from Kluyveromyces marxianus, which shares 25 and 19% sequence identity to the S. cerevisiae and Homo sapiens orthologs of Usb1, respectively. We show that K. marxianus Usb1 enzyme has CPDase activity and determined its structure, free and bound to the substrate analog uridine 5'-monophosphate. We find that the origin of CPDase activity is related to a loop structure that is conserved in yeast and forms a distinct penultimate (n - 1) nucleotide binding site. These data provide structural and mechanistic insight into the evolutionary divergence of Usb1 catalysis.


Subject(s)
Evolution, Molecular , Mitochondrial Proteins/genetics , Phosphoric Diester Hydrolases/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Binding Sites/genetics , Catalytic Domain/genetics , Humans , Kluyveromyces/chemistry , Mitochondrial Proteins/chemistry , Models, Molecular , Nucleic Acid Conformation , Nucleotides/chemistry , Nucleotides/genetics , Phosphates/metabolism , Phosphoric Diester Hydrolases/chemistry , RNA Splicing/genetics , RNA, Small Nuclear/chemistry , RNA, Small Nuclear/genetics , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Spliceosomes/chemistry , Spliceosomes/genetics
5.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 10): 652-656, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31584014

ABSTRACT

The structure of a 22-base-pair RNA helix with mismatched pyrimidine base pairs is reported. The helix contains two symmetry-related CUG sequences: a triplet-repeat motif implicated in myotonic dystrophy type 1. The CUG repeat contains a U-U mismatch sandwiched between Watson-Crick pairs. Additionally, the center of the helix contains a dimerized UUCG motif with tandem pyrimidine (U-C/C-U) mismatches flanked by U-G wobble pairs. This region of the structure is significantly different from previously observed structures that share the same sequence and neighboring base pairs. The tandem pyrimidine mismatches are unusual and display sheared, cross-strand stacking geometries that locally constrict the helical width, a type of stacking previously associated with purines in internal loops. Thus, pyrimidine-rich regions of RNA have a high degree of structural diversity.


Subject(s)
Base Pair Mismatch , Pyrimidines/chemistry , RNA/chemistry , Crystallography, X-Ray , Hydrogen Bonding , Models, Molecular , Nucleic Acid Conformation , Repetitive Sequences, Nucleic Acid
6.
Prostate ; 79(7): 757-767, 2019 05.
Article in English | MEDLINE | ID: mdl-30811623

ABSTRACT

BACKGROUND: Several studies show that prostatic fibrosis is associated with male lower urinary tract dysfunction (LUTD). Development of fibrosis is typically attributed to signaling through the transforming growth factor ß (TGF-ß) pathway, but our laboratory has demonstrated that in vitro treatment of human prostatic fibroblasts with the C-X-C motif chemokine ligand 12 (CXCL12) chemokine stimulates myofibroblast phenoconversion and that CXCL12 has the capacity to activate profibrotic pathways in these cells in a TGF-ß-independent manner. We have previously reported that feeding mice high-fat diet (HFD) results in obesity, type II diabetes, increased prostatic fibrosis, and urinary voiding dysfunction. The purpose of this study was to test the hypothesis that in vivo blockade of the CXCL12/CXCR4 axis would inhibit the development of fibrosis-mediated LUTD in HFD-fed mice. METHODS: Two-month-old male senescence-accelerated mouse prone-6 mice were fed either a HFD or low-fat diet (LFD) for 8 months. Half of each dietary group were given constant access to normal water or water that contained the C-X-C chemokine receptor type 4 (CXCR4; CXCL12 receptor) antagonist CXCR4AIII. At the conclusion of the study, mice were weighed, subjected to oral glucose tolerance testing and cystometry, and lower urinary tract tissues collected and assessed for collagen content. RESULTS: HFD-fed mice became significantly obese, insulin resistant, and hyperglycemic, consistent with acquisition of metabolic syndrome, compared with LFD-fed mice. Anesthetized cystometry demonstrated that HFD-fed mice experienced significantly longer intercontractile intervals and greater functional bladder capacity than LFD-fed mice. Immunohistochemistry demonstrated high levels of CXCR4 and CXCR7 staining in mouse prostate epithelial and stromal cells. Picrosirius red staining indicated significantly greater periurethral collagen deposition in the prostates of HFD than LFD-fed mice. Treatment with the CXCR4 antagonist CXCR4AIII did not affect acquisition of metabolic syndrome but did reduce both urinary voiding dysfunction and periurethral prostate collagen accumulation. CONCLUSIONS: This is the first study to report that obesity-induced lower urinary tract fibrosis and voiding dysfunction can be repressed by antagonizing the activity of the CXCR4 chemokine receptor in vivo. These data suggest that targeting the CXCL12/CXCR4 signaling pathway may be a clinical option for the prevention or treatment of human male LUTD.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Lower Urinary Tract Symptoms/drug therapy , Prostate/drug effects , Receptors, CXCR4/antagonists & inhibitors , Receptors, CXCR4/biosynthesis , Animals , Chemokine CXCL12/antagonists & inhibitors , Chemokine CXCL12/biosynthesis , Collagen/metabolism , Diet, High-Fat/adverse effects , Disease Models, Animal , Fibrosis/etiology , Fibrosis/pathology , Lower Urinary Tract Symptoms/etiology , Lower Urinary Tract Symptoms/physiopathology , Male , Metabolic Syndrome/etiology , Mice , Obesity/etiology , Prostate/pathology , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...