Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Cogn ; 168: 105974, 2023 06.
Article in English | MEDLINE | ID: mdl-37037170

ABSTRACT

A crucial skill in infant language acquisition is learning of the native language phonemes. This requires the ability to group complex sounds into distinct auditory categories based on their shared features. Problems in phonetic learning have been suggested to underlie language learning difficulties in dyslexia, a developmental reading-skill deficit. We investigated auditory abilities important for language acquisition in newborns with or without a familial risk for dyslexia with electrophysiological mismatch responses (MMRs). We presented vowel changes in a sequence of acoustically varying vowels, requiring grouping of the stimuli to two phoneme categories. The vowel changes elicited an MMR which was significantly diminished in infants whose parents had the most severe dyslexia in our sample. Phoneme-MMR amplitude and its hemispheric lateralization were associated with language test outcomes assessed at 28 months, an age at which it becomes possible to behaviourally test children and several standardized tests are available. In addition, statistically significant MMRs to violations of a complex sound-order rule were only found in infants without dyslexia risk, but these results are very preliminary due to small sample size. The results demonstrate the relevance of the newborn infants' readiness for phonetic learning for their emerging language skills. Phoneme extraction difficulties in infants at familial risk may contribute to the phonological deficits observed in dyslexia.


Subject(s)
Dyslexia , Speech Perception , Infant , Child , Humans , Infant, Newborn , Speech/physiology , Genetic Predisposition to Disease , Speech Perception/physiology , Acoustic Stimulation/methods , Reading , Phonetics , Language
2.
Clin Neurophysiol ; 137: 159-176, 2022 05.
Article in English | MEDLINE | ID: mdl-35358758

ABSTRACT

OBJECTIVE: We investigated early maturation of the infant mismatch response MMR, including mismatch negativity (MMN), positive MMR (P-MMR), and late discriminative negativity (LDN), indexing auditory discrimination abilities, and the influence of familial developmental dyslexia risk. METHODS: We recorded MMRs to vowel, duration, and frequency deviants in pseudo-words at 0, 6, and 28 months and compared MMRs in subgroups with vs. without dyslexia risk, in a sample over-represented by risk infants. RESULTS: Neonatal MMN to the duration deviant became larger and earlier by 28 months; MMN was elicited by more deviants only at 28 months. The P-MMR was predominant in infancy; its amplitude increased by 6 and decreased by 28 months; latency decreased with increasing age. An LDN emerged by 6 months and became larger and later by 28 months. Dyslexia risk affected MMRs and their maturation. CONCLUSIONS: MMRs demonstrate an expected maturational pattern with 2-3 peaks by 28 months. The effects of dyslexia risk are prominent but not always as expected. SIGNIFICANCE: This large-scale longitudinal study shows MMR maturation with three age groups and three deviants. Results illuminate MMR's relation to the adult responses, and hence their cognitive underpinnings, and help in identifying typical/atypical auditory development in early childhood.


Subject(s)
Dyslexia , Speech Perception , Acoustic Stimulation , Adult , Child, Preschool , Dyslexia/diagnosis , Dyslexia/genetics , Electroencephalography , Evoked Potentials, Auditory/physiology , Humans , Infant , Infant, Newborn , Longitudinal Studies , Speech Perception/physiology
3.
Heliyon ; 6(8): e04619, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32904386

ABSTRACT

Poor neural speech discrimination has been connected to dyslexia, and may represent phonological processing deficits that are hypothesized to be the main cause for reading impairments. Thus far, neural speech discrimination impairments have rarely been investigated in adult dyslexics, and even less by examining sources of neuromagnetic responses. We compared neuromagnetic speech discrimination in dyslexic and typical readers with mismatch fields (MMF) and determined the associations between MMFs and reading-related skills. We expected weak and atypically lateralized MMFs in dyslexic readers, and positive associations between reading-related skills and MMF strength. MMFs were recorded to a repeating pseudoword /ta-ta/ with occasional changes in vowel identity, duration, or syllable frequency from 43 adults, 21 with confirmed dyslexia. Phonetic (vowel and duration) changes elicited left-lateralized MMFs in the auditory cortices. Contrary to our hypothesis, MMF source strengths or lateralization did not differ between groups. However, better verbal working memory was associated with stronger left-hemispheric MMFs to duration changes across groups, and better reading was associated with stronger right-hemispheric late MMFs across speech-sound changes in dyslexic readers. This suggests a link between neural speech processing and reading-related skills, in line with previous work. Furthermore, our findings suggest a right-hemispheric compensatory mechanism for language processing in dyslexia. The results obtained promote the use of MMFs in investigating reading-related brain processes.

4.
Sci Rep ; 10(1): 8646, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32457322

ABSTRACT

Whereas natural acoustic variation in speech does not compromise phoneme discrimination in healthy adults, it was hypothesized to be a challenge for developmental dyslexics. We investigated dyslexics' neural and perceptual discrimination of native language phonemes during acoustic variation. Dyslexics and non-dyslexics heard /æ/ and /i/ phonemes in a context with fo variation and then in a context without it. Mismatch negativity (MMN) and P3a responses to phoneme changes were recorded with electroencephalogram to compare groups during ignore and attentive listening. Perceptual phoneme discrimination in the variable context was evaluated with hit-ratios and reaction times. MMN/N2bs were diminished in dyslexics in the variable context. Hit-ratios were smaller in dyslexics than controls. MMNs did not differ between groups in the context without variation. These results suggest that even distinctive vowels are challenging to discriminate for dyslexics when the context resembles natural variability of speech. This most likely reflects poor categorical perception of phonemes in dyslexics. Difficulties to detect linguistically relevant invariant information during acoustic variation in speech may contribute to dyslexics' deficits in forming native language phoneme representations during infancy. Future studies should acknowledge that simple experimental paradigms with repetitive stimuli can be insensitive to dyslexics' speech processing deficits.


Subject(s)
Acoustic Stimulation , Auditory Perception/physiology , Dyslexia/physiopathology , Evoked Potentials, Auditory/physiology , Speech Perception/physiology , Adult , Attention/physiology , Brain Waves/physiology , Discrimination, Psychological , Electroencephalography , Female , Humans , Male
5.
Biol Psychol ; 132: 217-227, 2018 02.
Article in English | MEDLINE | ID: mdl-29305875

ABSTRACT

To process complex stimuli like language, our auditory system must tolerate large acoustic variance, like speaker variability, and still be sensitive enough to discriminate between phonemes and to detect complex sound relationships in, e.g., prosodic cues. Our study determined discrimination of speech sounds in input mimicking natural speech variability, and detection of deviations in regular pitch relationships (rule violations) between speech sounds. We investigated the automaticity and the influence of attention and explicit awareness on these changes by recording the neurophysiological mismatch negativity (MMN) and P3a as well as task performance from 21 adults. The results showed neural discrimination of phonemes and rule violations as indicated by MMN and P3a, regardless of whether the sounds were attended or not, even when participants could not explicitly describe the rule. While small sample size precluded statistical analysis of some outcomes, we still found preliminary associations between the MMN amplitudes, task performance, and emerging explicit awareness of the rule. Our results highlight the automaticity of processing complex aspects of speech as a basis for the emerging conscious perception and explicit awareness of speech properties. While MMN operates at the implicit processing level, P3a appears to work at the borderline of implicit and explicit.


Subject(s)
Attention/physiology , Awareness , Language , Phonetics , Speech Perception/physiology , Acoustic Stimulation/methods , Adult , Consciousness , Cues , Electroencephalography , Evoked Potentials, Auditory/physiology , Female , Humans , Male , Task Performance and Analysis , Young Adult
6.
Neuropsychologia ; 61: 247-58, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24992584

ABSTRACT

The present study addressed the effects of musicianship on neural and behavioral discrimination of Western music chords. In abstract oddball paradigms, minor chords and inverted major chords were presented in the context of major chords to musician and non-musician participants in a passive listening task (with EEG recordings) and in an active discrimination task. Both sinusoidal sounds and harmonically rich piano sounds were used. Musicians outperformed non-musicians in the discrimination task. Change-related mismatch negativity (MMN) was evoked to minor and inverted major chords in musicians only, and N1 amplitude was larger in musicians than non-musicians. While MMN was absent in non-musicians, both groups showed decreased N1 in response to minor compared to major chords. The results indicate that processing of complex musical stimuli is enhanced in musicians both behaviorally and neurally, but that major-minor chord categorization is present to some extent also in the absence of music training.


Subject(s)
Auditory Perception/physiology , Brain/physiology , Music , Acoustic Stimulation/methods , Adult , Discrimination, Psychological/physiology , Electroencephalography , Evoked Potentials, Auditory , Female , Humans , Male , Professional Competence , Psychological Tests , Surveys and Questionnaires , Young Adult
7.
Psychophysiology ; 49(8): 1125-32, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22681183

ABSTRACT

Music practice since childhood affects the development of hearing skills. An important classification in Western music is the chords' major-minor dichotomy. Its preattentive auditory discrimination was studied here using a mismatch negativity (MMN) paradigm in 13-year-olds with active hobbies, music-related (music group) or other (control group). In a context of root major chords, root minor chords and inverted major chords were presented infrequently. The interval structure of inverted majors differs more from root majors than the interval structure of root minors. However, the identity of the chords is the same in inverted and root majors (major), but different in root minors. The deviant chords introduced no new frequencies to the paradigm. Hence, an MMN caused by physical deviance was prevented. An MMN was elicited by the minor chords but not by the inverted majors. The MMN amplitude in the music group was larger than in the control group. Thus, the conceptual discrimination skills are present already in the preattentive processing level of the auditory cortex, and musical training can advance these skills.


Subject(s)
Music/psychology , Pitch Discrimination/physiology , Adolescent , Analysis of Variance , Data Interpretation, Statistical , Electroencephalography , Female , Humans , Male , Psychomotor Performance/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...