Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Glia ; 70(4): 650-660, 2022 04.
Article in English | MEDLINE | ID: mdl-34936134

ABSTRACT

Previous studies have implicated several brain cell types in schizophrenia (SCZ), but the genetic impact of astrocytes is unknown. Considering their high complexity in humans, astrocytes are likely key determinants of neurodevelopmental diseases, such as SCZ. Human induced pluripotent stem cell (hiPSC)-derived astrocytes differentiated from five monozygotic twin pairs discordant for SCZ and five healthy subjects were studied for alterations related to high genetic risk and clinical manifestation of SCZ in astrocyte transcriptomics, neuron-astrocyte co-cultures, and in humanized mice. We found gene expression and signaling pathway alterations related to synaptic dysfunction, inflammation, and extracellular matrix components in SCZ astrocytes, and demyelination in SCZ astrocyte transplanted mice. While Ingenuity Pathway Analysis identified SCZ disease and synaptic transmission pathway changes in SCZ astrocytes, the most consistent findings were related to collagen and cell adhesion associated pathways. Neuronal responses to glutamate and GABA differed between astrocytes from control persons, affected twins, and their unaffected co-twins and were normalized by clozapine treatment. SCZ astrocyte cell transplantation to the mouse forebrain caused gene expression changes in synaptic dysfunction and inflammation pathways of mouse brain cells and resulted in behavioral changes in cognitive and olfactory functions. Differentially expressed transcriptomes and signaling pathways related to synaptic functions, inflammation, and especially collagen and glycoprotein 6 pathways indicate abnormal extracellular matrix composition in the brain as one of the key characteristics in the etiology of SCZ.


Subject(s)
Induced Pluripotent Stem Cells , Schizophrenia , Animals , Astrocytes/metabolism , Genetic Predisposition to Disease/genetics , Humans , Induced Pluripotent Stem Cells/metabolism , Mice , Prosencephalon/metabolism , Schizophrenia/genetics
2.
Mol Psychiatry ; 25(12): 3432-3441, 2020 12.
Article in English | MEDLINE | ID: mdl-31455857

ABSTRACT

Psychopathy is an extreme form of antisocial behavior, with about 1% prevalence in the general population, and 10-30% among incarcerated criminal offenders. Although the heritability of severe antisocial behavior is up to 50%, the genetic background is unclear. The underlying molecular mechanisms have remained unknown but several previous studies suggest that abnormal glucose metabolism and opioidergic neurotransmission contribute to violent offending and psychopathy. Here we show using iPSC-derived cortical neurons and astrocytes from six incarcerated extremely antisocial and violent offenders, three nonpsychopathic individuals with substance abuse, and six healthy controls that there are robust alterations in the expression of several genes and immune response-related molecular pathways which were specific for psychopathy. In neurons, psychopathy was associated with marked upregulation of RPL10P9 and ZNF132, and downregulation of CDH5 and OPRD1. In astrocytes, RPL10P9 and MT-RNR2 were upregulated. Expression of aforementioned genes explained 30-92% of the variance of psychopathic symptoms. The gene expression findings were confirmed with qPCR. These genes may be relevant to the lack of empathy and emotional callousness seen in psychopathy, since several studies have linked these genes to autism and social interaction.


Subject(s)
Antisocial Personality Disorder , Criminals , Aggression , Antisocial Personality Disorder/genetics , Emotions , Empathy , Humans
3.
Mol Psychiatry ; 25(12): 3455-3456, 2020 Dec.
Article in English | MEDLINE | ID: mdl-31570776

ABSTRACT

A correction to this paper has been published and can be accessed via a link at the top of the paper.

SELECTION OF CITATIONS
SEARCH DETAIL
...