Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Orphanet J Rare Dis ; 13(1): 111, 2018 07 06.
Article in English | MEDLINE | ID: mdl-29980216

ABSTRACT

BACKGROUND: Mucous membrane pemphigoid is a group of chronic subepithelial autoimmune blistering diseases that mainly affect mucous membranes. Laminin 332-specific autoantibodies are present in approximately 1/3 of the patients, being associated with an increased risk of malignancy. Because of the severe complications, an early recognition of the disease allowing a timely therapy is essential. The gold standard methods for detection of laminin 332-specific autoantibodies, including the immunoprecipitation and immunoblotting are non-quantitative, laborious and restricted to a few specialized laboratories worldwide. In addition, the use of radioimmunoassays, although highly sensitive and specific, are laborious, expensive and tightly regulated. Therefore, there is a stringent need for a quantitative immunoassay for the routine detection of laminin 332-specific autoantibodies more broadly available to diagnostic laboratories. The aim of this study was to compare different antigenic substrates, including native, recombinant laminin 332 and laminin 332-rich keratinocyte extracellular matrix, for development of an ELISA to detect autoantibodies in mucous membrane pemphigoid. RESULTS: Using a relatively large number of sera from MMP patients with well-characterized autoantibody reactivity we show the suitability of ELISA systems using laminin 332 preparations as adjunct diagnostic tools in MMP. While glycosylation of laminin 332 does not appear to influence its recognition by MMP autoantibodies, ELISA systems using both purified, native and recombinant laminin 332 demonstrated a high sensitivity and good correlation with the detection of autoantibodies by immunoblotting. ELISA systems using different laminin 332 preparations represent a feasible and more accessible alternative for a broad range of laboratories. CONCLUSIONS: Our findings qualify the use of immunoassays with the laminin 332-rich preparations as an ancillary diagnostic tool in mucous membrane pemphigoid.


Subject(s)
Cell Adhesion Molecules/immunology , Immunoassay/methods , Mucous Membrane/metabolism , Pemphigoid, Benign Mucous Membrane/immunology , Pemphigoid, Benign Mucous Membrane/metabolism , Autoantibodies/analysis , Autoantibodies/immunology , Autoantigens/analysis , Autoantigens/immunology , Blotting, Western , Cell Line, Tumor , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Extracellular Matrix/metabolism , Humans , Kalinin
2.
J Invest Dermatol ; 137(10): 2131-2139, 2017 10.
Article in English | MEDLINE | ID: mdl-28576735

ABSTRACT

The inflammatory form of epidermolysis bullosa acquisita is caused by autoantibodies against type VII collagen (C7), a component of the dermal-epidermal junction. We have previously shown that myeloid Src family kinases mediate skin inflammation triggered by anti-C7 antibodies. Here we identify the Syk tyrosine kinase as a critical component of autoantibody-induced skin inflammation downstream of Src family kinases. Immobilized C7-anti-C7 immune complexes triggered neutrophil activation and Syk phosphorylation in a Src family kinase-dependent manner. Bone marrow chimeric mice lacking Syk in their hematopoietic compartment were completely protected from skin inflammation triggered by anti-C7 antibodies despite normal circulating anti-C7 levels. Syk deficiency abrogated the accumulation of CXCL2, IL-1ß, and leukotriene B4 at the site of inflammation and resulted in defective in vivo neutrophil recruitment. Syk-/- neutrophils had a normal intrinsic migratory capacity but failed to release CXCL2 or leukotriene B4 upon activation by immobilized C7-anti-C7 immune complexes, indicating a role for Syk in the amplification of the inflammation process. These results identify Syk as a critical component of skin inflammation in a mouse model of epidermolysis bullosa acquisita and as a potential therapeutic target in epidermolysis bullosa acquisita and other mechanistically related inflammatory skin diseases such as bullous pemphigoid.


Subject(s)
DNA/genetics , Epidermolysis Bullosa Acquisita/genetics , Mutation , Neutrophils/immunology , Skin/immunology , Syk Kinase/genetics , Animals , Autoantibodies/immunology , Cells, Cultured , Complement C7/immunology , Complement C7/metabolism , DNA Mutational Analysis , Disease Models, Animal , Epidermolysis Bullosa Acquisita/metabolism , Epidermolysis Bullosa Acquisita/pathology , Mice , Neutrophil Infiltration , Skin/pathology , Syk Kinase/metabolism
3.
Mediators Inflamm ; 2016: 3239167, 2016.
Article in English | MEDLINE | ID: mdl-26884644

ABSTRACT

Tumors act systemically to sustain cancer progression, affecting the physiological processes in the host and triggering responses in the blood circulating cells. In this study, we explored blood transcriptional patterns of patients with two subtypes of HER2 negative breast cancers, with different prognosis and therapeutic outcome. Peripheral blood samples from seven healthy female donors and 29 women with breast cancer including 14 triple-negative breast cancers and 15 hormone-dependent breast cancers were evaluated by microarray. We also evaluated the stroma in primary tumors. Transcriptional analysis revealed distinct molecular signatures in the blood of HER2- breast cancer patients according to ER/PR status. Our data showed the implication of immune signaling in both breast cancer subtypes with an enrichment of these processes in the blood of TNBC patients. We observed a significant alteration of "chemokine signaling," "IL-8 signaling," and "communication between innate and adaptive immune cells" pathways in the blood of TNBC patients correlated with an increased inflammation and necrosis in their primary tumors. Overall, our data indicate that the presence of triple-negative breast cancer is associated with an enrichment of altered systemic immune-related pathways, suggesting that immunotherapy could possibly be synergistic to the chemotherapy, to improve the clinical outcome of these patients.


Subject(s)
Breast Neoplasms/genetics , Gene Expression Regulation, Neoplastic/genetics , Receptor, ErbB-2/genetics , Adult , Female , Genome, Human/genetics , Humans , Male , Middle Aged , Receptor, ErbB-2/deficiency , Signal Transduction/genetics , Signal Transduction/physiology
4.
Onco Targets Ther ; 8: 3415-23, 2015.
Article in English | MEDLINE | ID: mdl-26604799

ABSTRACT

PURPOSE: Breast cancer patients' response to treatment is highly dependent on the primary tumor molecular features, with triple-negative breast tumors having the worst prognosis of all subtypes. According to the molecular features, tumors stimulate the microenvironment to induce distinct immune responses, baseline immune activation being associated with higher likelihood of pathologic response. In this study, we investigated the deconvolution of the immunological status of triple-negative tumors in comparison with luminal tumors and the association with patients' clinicopathological characteristics. PATIENTS AND METHODS: Gene expression of 84 inflammatory molecules and their receptors were analyzed in 40 peripheral blood samples from patients with Her2- primary breast cancer tumors. We studied the association of triple-negative phenotype with age, clinical stage, tumor size, lymph nodes, and menopausal status. RESULTS: We observed that more patients with estrogen (ER)/progesterone (PR)-negative tumors had grade III, while more patients with ER/PR-positive tumors had grade II tumors. Gene expression analysis revealed a panel of 14 genes to have differential expression between the two groups: several interleukins: IL13, IL16, IL17C and IL17F, IL1A, IL3; interleukin receptors: IL10RB, IL5RA; chemokines: CXCL13 and CCL26; and cytokines: CSF2, IFNA2, OSM, TNSF13. CONCLUSION: The expression levels of these genes have been previously shown to be associated with reduced immunological status; indeed, the triple-negative breast cancer patients presented with lower counts of lymphocytes and eosinophils than the ER/PR-positive ones. These results contribute to a better understanding of the possible role of antitumor immune responses in mediating the clinical outcome.

5.
BMC Biotechnol ; 15: 114, 2015 Dec 30.
Article in English | MEDLINE | ID: mdl-26718927

ABSTRACT

BACKGROUND: We aimed to demonstrate that DF stem cells from impacted molars and canines can be used to improve bone regeneration on titanium implants surfaces. This study highlights the presence of stem cells in DF, their potential to adhere and differentiate into osteoblasts on different types of titanium surfaces. RESULTS: Isolated cells from the harvested DF tissue from impacted canine/molars, expressed stem cells markers. Differentiation into bone cells was induced in presence or absence of BMP-2 and TGFß1. The presence of growth factors until 28 days in medium maintained the cells in an earlier stage of differentiation with a lower level of specific bone proteins and a higher expression of alkaline phosphatase (ALP). Influence of titanium implants with different bioactive coatings, hydroxyapatite (TiHA) and with silicatitanate (TiSiO2), and porous Ti6Al7Nb implants as control (TiCtrl), was studied in terms of cell adhesion and viability. Ti HA implants proved to be more favorable for adhesion and proliferation of DF stem cells in first days of cultivation. The influence of titanium coatings and osteogenic differentiation mediums with or without growth factors were evaluated. Additional BMP-2 in the medium did not allow DF stem cells to develop a more mature phenotype, leaving them in a pre-osteogenic stage. The best sustained mineralization process evaluated by immuno-cytochemical staining, scanning electron microscopy and Ca(2+) quantification was observed for TiHA implants with a higher expression of ALP, collagen and Ca(2+) deposition. Long term culturing (70 days) on titanium surfaces of DF stem cells in standard medium without soluble osteogenic inducers, indicated that HA coating is more favorable, with the acquisition of a more mature osteoblastic phenotype as shown by immunocytochemical staining. These findings demonstrated that even in absence of exogenous osteogenic factors, TiHA implants and in a lesser extent TiCtrl and TiSiO2 implants can induce and sustain osteogenic differentiation of DF stem cells, by their chemical and topographical properties. CONCLUSIONS: Our research demonstrated that DF stem cells have a spontaneous tendency for osteogenic differentiation and can be used for improving bone regeneration on titanium implants surfaces.


Subject(s)
Bone Regeneration/physiology , Dental Implants , Dental Sac/cytology , Stem Cells/cytology , Titanium , Adolescent , Adult , Alkaline Phosphatase/metabolism , Cell Differentiation/physiology , Cells, Cultured , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/metabolism , Cuspid/cytology , Durapatite/chemistry , Female , Humans , Mesenchymal Stem Cells/cytology , Molar/cytology , Osteoblasts/cytology , Osteoblasts/physiology , Osteogenesis , Young Adult
6.
PLoS One ; 9(7): e102764, 2014.
Article in English | MEDLINE | ID: mdl-25068292

ABSTRACT

Breast cancer prognosis and treatment is highly dependent on the molecular features of the primary tumors. These tumors release specific molecules into the environment that trigger characteristic responses into the circulatory cells. In this study we investigated the expression pattern of 84 genes known to be involved in breast cancer signaling in the peripheral blood of breast cancer patients with ER-, PR- primary tumors. The patients were grouped according to Her2 expression on the primary tumors in Her2+ and Her2- cohorts. Transcriptional analysis revealed 15 genes to be differentially expressed between the two groups highlighting that Her2 signaling in primary tumors could be associated with specific blood gene expression. We found CCNA1 to be up-regulated, while ERBB2, RASSF1, CDH1, MKI67, GATA3, GLI1, SFN, PTGS2, JUN, NOTCH1, CTNNB1, KRT8, SRC, and HIC1 genes were down-regulated in the blood of triple negative breast cancer patients compared to Her2+ cohort. IPA network analysis predicts that the identified genes are interconnected and regulate each other. These genes code for cell cycle regulators, cell adhesion molecules, transcription factors or signal transducers that modulate immune signaling, several genes being also associated with cancer progression and treatment response. These results indicate an altered immune signaling in the peripheral blood of triple negative breast cancer patients. The involvement of the immune system is necessary in favorable treatment response, therefore these results could explain the low response rates observed for triple negative breast cancer patients.


Subject(s)
Breast Neoplasms/blood , Breast Neoplasms/genetics , Gene Expression Profiling , Genes, erbB-2 , Aged , Female , History, 16th Century , Humans , Middle Aged , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...