Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharmacol Exp Ther ; 358(3): 413-22, 2016 09.
Article in English | MEDLINE | ID: mdl-27353073

ABSTRACT

Psoriasis and atopic dermatitis are skin diseases affecting millions of patients. Here, we characterize benzoxaborole phosphodiesterase (PDE)-4 inhibitors, a new topical class that has demonstrated therapeutic benefit for psoriasis and atopic dermatitis in phase 2 or phase 3 studies. Crisaborole [AN2728, 4-((1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-5-yl)oxy)benzonitrile], compd2 [2-ethoxy-6-((1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-5-yl)oxy)nicotinonitrile], compd3 [6-((1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-5-yl)oxy)-2-(2-isopropoxyethoxy)nicotinonitrile], and compd4 [5-chloro-6-((1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-5-yl)oxy)-2-((4-oxopentyl)oxy)nicotinonitrile] are potent PDE4 inhibitors with similar affinity for PDE4 isoforms and equivalent inhibition on the catalytic domain and the full-length enzyme. These benzoxaboroles are less active on other PDE isozymes. Compd4 binds to the catalytic domain of PDE4B2 with the oxaborole group chelating the catalytic bimetal and overlapping with the phosphate in cAMP during substrate hydrolysis, and the interaction extends into the adenine pocket. In cell culture, benzoxaborole PDE4 inhibitors suppress the release of tumor necrosis factor-α, interleukin (IL)-23, IL-17, interferon-γ, IL-4, IL-5, IL-13, and IL-22, and these cytokines contribute to the pathologic changes in skin structure and barrier functions as well as immune dysregulation in atopic dermatitis and psoriasis. Treatment with compd3 or N(6),2'-O-dibutyryladenosine 3',5'-cyclic monophosphate increases cAMP response element binding protein phosphorylation in human monocytes and decreases extracellular signal-regulated kinase phosphorylation in human T cells; these changes lead to reduced cytokine production and are among the mechanisms by which compd3 blocks cytokine release. Topical compd3 penetrates the skin and suppresses phorbol myristate acetate-induced IL-13, IL-22, IL-17F, and IL-23 transcription and calcipotriol-induced thymic stromal lymphopoietin expression in mouse skin. Skin thinning is a major dose-limiting side effect of glucocorticoids. By contrast, repeated application of compd3 did not thin mouse skin. These findings show the potential benefits and safety of benzoxaborole PDE4 inhibitors for the treatment of psoriasis and atopic dermatitis.


Subject(s)
Boron Compounds/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Dermatitis, Atopic/drug therapy , Phosphodiesterase 4 Inhibitors/pharmacology , Psoriasis/drug therapy , Skin/drug effects , Skin/pathology , Administration, Topical , Animals , Boron Compounds/administration & dosage , Boron Compounds/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/administration & dosage , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Catalytic Domain , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/chemistry , Cytokines/metabolism , Dermatitis, Atopic/metabolism , Dermatitis, Atopic/pathology , Female , Gene Expression Regulation/drug effects , Leukocytes/drug effects , Leukocytes/metabolism , Mice , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Models, Molecular , Phosphodiesterase 4 Inhibitors/administration & dosage , Phosphodiesterase 4 Inhibitors/therapeutic use , Phosphorylation/drug effects , Psoriasis/metabolism , Psoriasis/pathology , Skin/metabolism , Thymic Stromal Lymphopoietin
2.
Bioorg Med Chem Lett ; 23(21): 5870-3, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24075731

ABSTRACT

Structure-activity relationships of 6-(benzoylamino)benzoxaborole analogs were investigated for the inhibition of TNF-α, IL-1ß, and IL-6 from lipopolysaccharide stimulated peripheral blood mononuclear cells. Compound 1q showed potent activity against all three cytokines with IC50 values between 0.19 and 0.50µM, inhibited LPS-induced TNF-α and IL-6 elevation in mice and improved collagen-induced arthritis in mice. Compound 1q (AN4161) is considered to be a promising lead for novel anti-inflammatory agent with an excellent pharmacokinetic profile.


Subject(s)
Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Arthritis, Experimental/drug therapy , Benzene Derivatives/chemistry , Benzene Derivatives/therapeutic use , Boron Compounds/chemistry , Boron Compounds/therapeutic use , Animals , Anti-Inflammatory Agents/pharmacokinetics , Anti-Inflammatory Agents/pharmacology , Benzene Derivatives/pharmacokinetics , Benzene Derivatives/pharmacology , Boron Compounds/pharmacokinetics , Boron Compounds/pharmacology , Interleukin-1beta/immunology , Interleukin-6/immunology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Lipopolysaccharides/immunology , Mice , Structure-Activity Relationship , Tumor Necrosis Factor-alpha/immunology
3.
J Pharmacol Exp Ther ; 347(3): 615-25, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24049062

ABSTRACT

Benzoxaboroles are a novel class of drug-like compounds that have been rich sources of novel inhibitors for various enzymes and of new drugs. While examining benzoxaborole activity in phenotypic screens, our attention was attracted by the (aminomethylphenoxy)benzoxaborole family, which potently inhibited Toll-like receptor-stimulated cytokine secretion from leukocytes. After considering their structure-activity relationships and the central role of kinases in leukocyte biology, we performed a kinome-wide screen to investigate the members of the (aminomethylphenoxy)benzoxaborole family. This technique identified Rho-activated kinase (ROCK) as a target. We showed competitive behavior, with respect to ATP, and then determined the ROCK2-drug cocrystal structure. The drug occupies the ATP site in which the oxaborole moiety provides hydrogen bond donors and acceptors to the hinge, and the aminomethyl group interacts with the magnesium/ATP-interacting aspartic acid common to protein kinases. The series exhibits excellent selectivity against most of the kinome, with greater than 15-fold selectivity against the next best member of the AGC protein kinase subfamily. Medicinal chemistry efforts with structure-based design resulted in a compound with a Ki of 170 nM. Cellular studies revealed strong enzyme inhibition rank correlation with suppression of intracellular phosphorylation of a ROCK substrate. The biochemical potencies of these compounds also translated to functional activity, causing smooth muscle relaxation in rat aorta and guinea pig trachea. The series exhibited oral availability and one member reduced rat blood pressure, consistent with ROCK's role in smooth muscle contraction. Thus, the benzoxaborole moiety represents a novel hinge-binding kinase scaffold that may have potential for therapeutic use.


Subject(s)
Boron Compounds/metabolism , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , rho-Associated Kinases/antagonists & inhibitors , rho-Associated Kinases/metabolism , Animals , Aorta, Thoracic/drug effects , Blood Pressure/drug effects , Cytokines/blood , Humans , Jurkat Cells , Models, Molecular , Muscle Contraction/drug effects , Muscle Relaxation/drug effects , Muscle, Smooth/drug effects , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , Phosphorylation , Protein Kinase Inhibitors/chemistry , Protein Phosphatase 1/metabolism , Rats , Rats, Inbred SHR , Rats, Sprague-Dawley , Structure-Activity Relationship , Trachea/drug effects , rho-Associated Kinases/genetics
4.
Bioorg Med Chem Lett ; 23(6): 1680-3, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23411072

ABSTRACT

A series of novel 6-(aminomethylphenoxy)benzoxaborole analogs was synthesized for the investigation of the structure-activity relationship of the inhibition of TNF-alpha, IL-1beta, and IL-6, from lipopolysaccharide stimulated peripheral blood mononuclear cells. Compounds 9d and 9e showed potent activity against all three cytokines with IC50 values between 33 and 83nM. Chloro substituted analog 9e (AN3485) is considered to be a promising lead for novel anti-inflammatory agent with a favorable pharmacokinetic profile.


Subject(s)
Anti-Inflammatory Agents/chemistry , Benzoxazoles/chemistry , Boron Compounds/chemistry , Bridged Bicyclo Compounds, Heterocyclic/metabolism , Animals , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/pharmacokinetics , Boron Compounds/metabolism , Boron Compounds/pharmacokinetics , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Bridged Bicyclo Compounds, Heterocyclic/pharmacokinetics , Half-Life , Humans , Interleukin-1beta/antagonists & inhibitors , Interleukin-1beta/metabolism , Interleukin-6/antagonists & inhibitors , Interleukin-6/metabolism , Kinetics , Leukocytes, Mononuclear/drug effects , Lipopolysaccharides/toxicity , Mice , Protein Binding , Structure-Activity Relationship , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism
5.
J Pharmacol Exp Ther ; 344(2): 436-46, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23192653

ABSTRACT

Pro-inflammatory cytokines play a critical role in the development of autoimmune and inflammatory diseases. Targeting the cytokine environment has proven efficient for averting inflammation. In this study, we reported that 6-[4-(aminomethyl)-2-chlorophenoxyl]benzo[c][1,2]oxaborol-1(3H)-ol (AN3485), a benzoxaborole analog, inhibited TLR2-, TLR3-, TLR4-, and TLR5-mediated TNF-α, IL-1ß, and IL-6 release from human PBMCs and isolated monocytes with IC(50) values ranging from 18 to 580 nM, and the inhibition was mediated at the transcriptional level. Topical administration of AN3485 significantly reduced PMA-induced contact dermatitis and oxazolone-induced delayed-type hypersensitivity in mice, indicating its capability of penetrating skin and potential topical application in skin inflammation. Oral administration of AN3485 showed dose-dependent suppression of LPS-induced TNF-α and IL-6 production in mice with an ED(90) of 30 mg/kg. Oral AN3485, 35 mg/kg, twice a day, suppressed collagen-induced arthritis in mice over a 20-day period. The potent anti-inflammatory activity in in vitro and in vivo disease models makes AN3485 an attractive therapeutic lead for a variety of cutaneous and systemic inflammatory diseases.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Arthritis/drug therapy , Boron Compounds/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Dermatitis, Allergic Contact/drug therapy , Drug Hypersensitivity/drug therapy , Hypersensitivity, Delayed/drug therapy , Toll-Like Receptors/antagonists & inhibitors , Administration, Oral , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Anti-Inflammatory Agents, Non-Steroidal/toxicity , Arthritis/immunology , Arthritis/metabolism , Boron Compounds/administration & dosage , Boron Compounds/pharmacokinetics , Boron Compounds/toxicity , Bridged Bicyclo Compounds, Heterocyclic/administration & dosage , Bridged Bicyclo Compounds, Heterocyclic/pharmacokinetics , Bridged Bicyclo Compounds, Heterocyclic/toxicity , Cell Survival/drug effects , Cells, Cultured , Cytokines/biosynthesis , Cytokines/metabolism , Dermatitis, Allergic Contact/etiology , Dermatitis, Allergic Contact/immunology , Dermatitis, Allergic Contact/metabolism , Dose-Response Relationship, Drug , Drug Hypersensitivity/etiology , Drug Hypersensitivity/immunology , Drug Hypersensitivity/metabolism , Female , Humans , Hypersensitivity, Delayed/chemically induced , Hypersensitivity, Delayed/immunology , Hypersensitivity, Delayed/metabolism , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Lipopolysaccharides/pharmacology , Male , Mice , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL
...