Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 797: 149165, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34311355

ABSTRACT

A kinetic model of autotrophic microalgal growth in sewage was developed to determine the biokinetic processes involved, including carbon-, nitrogen- and phosphorus-limited microalgal growth, dependence on light intensity, temperature and pH, light attenuation and gas exchange to the atmosphere. A new feature was the differentiation between two metabolic pathways of phosphorus consumption according to the availability of extracellular phosphorus. Two scenarios were differentiated: phosphorus-replete and -deplete culture conditions. In the former, the microalgae absorbed phosphorus to grow and store polyphosphate. In the latter the microalgae used the stored polyphosphate as a phosphorus source for growth. Calibration and validation were performed with experimental data from a pilot-scale membrane photobioreactor (MPBR) fed with the permeate obtained from an anaerobic membrane bioreactor (AnMBR) pilot plant fed with real urban wastewater. 12 of the model parameters were calibrated. Despite the dynamics involved in the operating and environmental conditions, the model was able to reproduce the overall process performance with a single set of model parameters values. Four periods of different environmental and operational conditions were accurately simulated. Regarding the former, light and temperature ranged 10-406 µmol·m-2·s-1 and 19.7-32.1 °C, respectively. Concerning the later, the photobioreactors widths were 0.25 and 0.10 m, and the biomass and hydraulic retention times ranged 3-4.5 and 1.5-2.5 days, respectively. The validation of the model resulted in an overall correlation coefficient (R2) of 0.9954. The simulation results showed the potential of the model to predict the dynamics of the different components: the relative proportions of microalgae, nitrogen and phosphorus removal, polyphosphate storage and consumption, and soluble organic matter concentration, as well as the influence of environmental parameters on the microalgae's biokinetic processes. The proposed model could provide an effective tool for the industry to predict microalgae production and comply with the discharge limits in areas declared sensitive to eutrophication.


Subject(s)
Microalgae , Biomass , Nitrogen/analysis , Phosphorus , Photobioreactors , Sewage , Wastewater
2.
Bioresour Technol ; 301: 122672, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31945681

ABSTRACT

The objective of this study was to evaluate the performance of an outdoor membrane-coupled high-rate algal pond equipped with industrial-scale membranes for treating urban wastewater. Decoupling biomass retention time (BRT) and hydraulic retention time (HRT) by membrane filtration resulted in improved process efficiencies, with higher biomass productivities and nutrient removal rates when operating at low HRTs. At 6 days of BRT, biomass productivity increased from 30 to 66 and to 95 g·m-3·d-1 when operating at HRTs of 6, 4 and 2.5 days, respectively. The corresponding nitrogen removal rates were 4, 8 and 11 g N·m-3·d-1 and the phosphorous removal rates were 0.5, 1.3 and 1.6 g P·m-3·d-1. The system was operated keeping moderate specific air demands (0.25 m3·m-2·h-1), resulting in reasonable operating and maintenance costs (€0.04 per m3) and energy requirements (0.29 kWh per m3). The produced water was free of pathogens and could be directly used for reusing purposes.


Subject(s)
Wastewater , Water Purification , Biomass , Nitrogen , Ponds , Waste Disposal, Fluid
3.
Bioresour Technol ; 218: 447-54, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27394990

ABSTRACT

With the aim of assessing the potential of microalgae cultivation for water resource recovery (WRR), the performance of three 0.55m(3) flat-plate photobioreactors (PBRs) was evaluated in terms of nutrient removal rate (NRR) and biomass production. The PBRs were operated outdoor (at ambient temperature and light intensity) using as growth media the nutrient-rich effluent from an AnMBR fed with pre-treated sewage. Solar irradiance was the most determining factor affecting NRR. Biomass productivity was significantly affected by temperatures below 20°C. The maximum biomass productivity (52.3mgVSS·L(-1)·d(-1)) and NRR (5.84mgNH4-N·L(-1)·d(-1) and 0.85mgPO4-P·L(-1)·d(-1)) were achieved at solar irradiance of 395µE·m(-2)·s(-1), temperature of 25.5°C, and HRT of 8days. Under these conditions, it was possible to comply with effluent nutrient standards (European Directive 91/271/CEE) when the nutrient content in the influent was in the range of 40-50mgN·L(-1) and 6-7mg P·L(-1).


Subject(s)
Microalgae/growth & development , Photobioreactors , Sewage , Water Microbiology , Biomass , Bioreactors , Biotechnology , Culture Media , Light , Membranes, Artificial , Scenedesmus , Temperature , Wastewater , Water Resources
SELECTION OF CITATIONS
SEARCH DETAIL
...