Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ChemSusChem ; 14(23): 5328-5335, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34668343

ABSTRACT

Nature provides much inspiration for the design of multistep conversion processes, with numerous reactions running simultaneously and without interference in cells, for example. A key challenge in mimicking nature's strategies is to compartmentalize incompatible reagents and catalysts, for example, for tandem catalysis. Here, we present a new strategy for antagonistic catalyst compartmentalization. The synthesis of bifunctional Janus catalyst particles carrying acid and base groups on the particle's opposite patches is reported as is their application as acid-base catalysts in oil/water emulsions. The synthesis strategy involved the use of monodisperse, hydrophobic and amine-functionalized silica particles (SiO2 -NH2 -OSi(CH3 )3 ) to prepare an oil-in-water Pickering emulsion (PE) with molten paraffin wax. After solidification, the exposed patch of the silica particles was selectively etched and refunctionalized with acid groups to yield acid-base Janus particles (Janus A-B). These materials were successfully applied in biphasic Pickering interfacial catalysis for the tandem dehydration-Knoevenagel condensation of fructose to 5-(hydroxymethyl)furfural-2-diethylmalonate (5-HMF-DEM) in a water/4-propylguaiacol PE. The results demonstrate the advantage of rapid extraction of 5-hydroxymethylfurfural (5-HMF), a prominent platform molecule prone to side product formation in acidic media. A simple strategy to tune the acid/base balance using PE with both Janus A-B and monofunctional SiO2 -NH2 -OSi(CH3 )3 base catalysts proved effective for antagonistic tandem catalysis.

2.
Chemistry ; 26(66): 15099-15102, 2020 Nov 26.
Article in English | MEDLINE | ID: mdl-32748465

ABSTRACT

Pickering emulsions (PEs), emulsions stabilized by solid particles, have shown to be a versatile tool for biphasic catalysis. Here, we report a droplet microfluidic approach for flow PE (FPE) catalysis, further expanding the possibilities for PE catalysis beyond standard batch PE reactions. This microreactor allowed for the inline analysis of the catalytic process with in situ Raman spectroscopy, as demonstrated for the acid-catalyzed deacetalization of benzaldehyde dimethyl acetal to form benzaldehyde. Furthermore, the use of the FPE system showed a nine fold improvement in yield compared to the simple biphasic flow system (FBS), highlighting the advantage of emulsification. Finally, FPE allowed an antagonistic set of reactions, the deacetalization-Knoevenagel condensation, which proved less efficient in FBS due to rapid acid-base quenching. The droplet microfluidic system thus offers a versatile new extension of PE catalysis.

3.
Angew Chem Int Ed Engl ; 59(44): 19545-19552, 2020 Oct 26.
Article in English | MEDLINE | ID: mdl-32524690

ABSTRACT

Surface-mounted metal-organic frameworks (SURMOFs) show promising behavior for a manifold of applications. As MOF thin films are often unsuitable for conventional characterization techniques, understanding their advantageous properties over their bulk counterparts presents a great analytical challenge. In this work, we demonstrate that MOFs can be grown on calcium fluoride (CaF2 ) windows after proper functionalization. As CaF2 is optically (in the IR and UV/Vis range of the spectrum) transparent, this makes it possible to study SURMOFs using conventional spectroscopic tools typically used during catalysis or gas sorption. Hence, we have measured HKUST-1 during the adsorption of CO and NO. We show that no copper oxide impurities are observed and also confirm that SURMOFs grown by a layer-by-layer (LbL) approach possess Cu+ species in paddlewheel confirmation, but 1.9 times less than in bulk HKUST-1. The developed methodology paves the way for studying the interaction of any adsorbed gases with thin films, not limited to MOFs, low temperatures, or these specific probe molecules, pushing the boundaries of our current understanding of functional porous materials.

4.
ChemSusChem ; 12(10): 2176-2180, 2019 May 21.
Article in English | MEDLINE | ID: mdl-30945810

ABSTRACT

Tandem catalysis combines multiple conversion steps, catalysts, and reagents in one reaction medium, offering the potential to reduce waste and time. In this study, Pickering emulsions-emulsions stabilized by solid particles-are used as easy-to-prepare and bioinspired, compartmentalized reaction media for tandem catalysis. Making use of simple and inexpensive acid and base catalysts, the strategy of compartmentalization of two noncompatible catalysts in both phases of the emulsion is demonstrated by using the deacetalization-Knoevenagel condensation reaction of benzaldehyde dimethyl acetal as a probe reaction. In contrast to simple biphasic systems, which do not allow for tandem catalysis and show instantaneous quenching of the acid and base catalysts, the Pickering emulsions show efficient antagonistic tandem catalysis and give the desired product in high yield, as a result of an increased interfacial area and suppressed mutual destruction of the acid and base catalysts.

5.
Angew Chem Int Ed Engl ; 57(38): 12458-12462, 2018 Sep 17.
Article in English | MEDLINE | ID: mdl-30039907

ABSTRACT

Facile fabrication of well-intergrown, oriented zeolite membranes with tunable chemical properties on commercially proven substrates is crucial to broadening their applications for separation and catalysis. Rationally determined electrostatic adsorption can enable the direct attachment of a b-oriented silicalite-1 monolayer on a commercial porous ceramic substrate. Homoepitaxially oriented, well-intergrown zeolite ZSM-5 membranes with a tunable composition of Si/Al=25-∞ were obtained by secondary growth of the monolayer. Intercrystallite defects can be eliminated by using Na+ as the mineralizer to promote lateral crystal growth and suppress surface nucleation in the direction of the straight channels, as evidenced by atomic force microscopy measurements. Water permeation testing shows tunable wettability from hydrophobic to highly hydrophilic, giving the potential for a wide range of applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...