Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 24(28): 7123-7127, 2018 May 17.
Article in English | MEDLINE | ID: mdl-29575279

ABSTRACT

Silanediol and copper catalysis are merged, for the first time, to create an enhanced Lewis acid catalyst system for enantioselective heterocycle functionalization. The promise of this silanediol and copper catalyst combination is demonstrated in the enantioselective addition of indoles to alkylidene malonates to give rise to the desirable adducts in excellent yield and high enantiomeric excess. From these studies, 1,1'-bi-2-naphthol (BINOL)-based silanediols emerge as one-of-a-kind cocatalysts. Their potential role in the reaction pathway is also discussed.

2.
Org Lett ; 18(15): 3766-9, 2016 08 05.
Article in English | MEDLINE | ID: mdl-27453257

ABSTRACT

Promising levels of enantiocontrol are observed in the silanediol-catalyzed addition of silyl ketene acetals to benzopyrylium triflates. This rare example of enantioselective, intermolecular chromenone functionalization with carbonyl-containing nucleophiles has potential applications in the synthesis of bioactive chromanones and tetrahydroxanthones.

3.
Org Lett ; 18(12): 2883-5, 2016 06 17.
Article in English | MEDLINE | ID: mdl-27255675

ABSTRACT

Sterically encumbered organosilanes can be difficult to synthesize with conventional, strongly basic reagents; the harsh reaction conditions are often low yielding and not suitable for many functional groups. As an alternative to the typical anionic strategies to construct silanes, the coupling of benzylic halides and arylhalosilanes with sonication has been identified as a high yielding and general strategy to access bulky and functionalized benzylic silanes. This new methodology provides a solution for the synthesis of families of bulky benzylic silanes for study in catalysis and other areas of chemical synthesis.

4.
Org Lett ; 17(10): 2442-5, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25906082

ABSTRACT

Tris(2,2,2-trifluoroethyl)borate [B(OCH2CF3)3] was found to be a mild and general reagent for the formation of a variety of imines by condensation of amides or amines with carbonyl compounds. N-Sulfinyl, N-toluenesulfonyl, N-(dimethylamino)sulfamoyl, N-diphenylphosphinoyl, N-(α-methylbenzyl), and N-(4-methoxyphenyl) aldimines are all accessible using this reagent at room temperature. The reactions are operationally simple, and the products are obtained without special workup or isolation procedures.


Subject(s)
Borates/chemistry , Hydrocarbons, Fluorinated/chemistry , Imines/chemical synthesis , Imines/chemistry , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...