Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Bioanal Chem ; 409(29): 6803-6812, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28948318

ABSTRACT

Banana is one of the most popular fruits in the world but has been substantially impaired by Panama disease in the last years. Fusarium oxysporum f. sp. cubense (Foc) is the causal agent and colonizes banana cultivars from many subgroups with different aggressiveness levels, often leading to plant death while compromising new crops in infested areas. This study has evaluated the ability of MALDI-MS protein and lipid fingerprinting to provide intraspecies classification of Foc isolates and to screen biomolecules related to host-pathogen relationship. The MS data, when inspected via partial least square discriminant analysis (PLS-DA), distinguished the isolates by aggressiveness as well as by specific location and host. Although both lipids and proteins show discriminating tendencies, these differences were more clearly perceived via the protein profiles. Considering that Cavendish cultivar is the more resistant option to endure Foc presence in the field, the lipids and proteins related to this subgroup might have an important role in pathogen adaptation. This study reports a new application of MALDI-MS for the analysis of a banana pathogen with intraspecies classification ability. Graphical abstract MALDI-MS classified Foc isolates by aggressiveness level on banana revealing the additional influence of location and host cultivar on the expression of lipids and proteins.


Subject(s)
Fungal Proteins/chemistry , Fusarium/chemistry , Fusarium/classification , Lipids/chemistry , Peptide Mapping , Plant Diseases/microbiology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
2.
Bioprocess Biosyst Eng ; 38(3): 469-79, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25234511

ABSTRACT

Experiments of continuous alcoholic fermentation of sugarcane juice with flocculating yeast recycle were conducted in a system of two 0.22-L tower bioreactors in series, operated at a range of dilution rates (D 1 = D 2 = 0.27-0.95 h(-1)), constant recycle ratio (α = F R /F = 4.0) and a sugar concentration in the feed stream (S 0) around 150 g/L. The data obtained in these experimental conditions were used to adjust the parameters of a mathematical model previously developed for the single-stage process. This model considers each of the tower bioreactors as a perfectly mixed continuous reactor and the kinetics of cell growth and product formation takes into account the limitation by substrate and the inhibition by ethanol and biomass, as well as the substrate consumption for cellular maintenance. The model predictions agreed satisfactorily with the measurements taken in both stages of the cascade. The major differences with respect to the kinetic parameters previously estimated for a single-stage system were observed for the maximum specific growth rate, for the inhibition constants of cell growth and for the specific rate of substrate consumption for cell maintenance. Mathematical models were validated and used to simulate alternative operating conditions as well as to analyze the performance of the two-stage process against that of the single-stage process.


Subject(s)
Bioreactors , Ethanol/metabolism , Models, Biological , Saccharomyces cerevisiae/growth & development , Fermentation/physiology , Flocculation
3.
Microbiol Res ; 168(4): 183-91, 2013 May 06.
Article in English | MEDLINE | ID: mdl-23279812

ABSTRACT

Drought is one of the major problems worldwide. The search for new and efficient microorganisms, from unexplored environments, to be used in association with plants to alleviate the negative effects imposed by water stress, is an interesting alternative. Thus, cacti-associated bacteria from the Brazilian semi-arid region were isolated based on their ability to grow in medium with reduced water availability. Strains were tested for the production of exopolysaccharides (EPS), as well as in vitro plant growth promotion traits. A great proportion of the isolates belong to the genus Bacillus. From a total of forty-eight bacteria, 65% were able to grow in medium with reduced water availability (0.919Aw), exopolysaccharide production was observed for 65% of the strains. The production of indole acetic acid (IAA) exceeding 51µgmL(-1) was observed for 4% and the high solubilization of Ca-P was verified for 6% of the isolates. No strain was able to produce hydrogen cyanide (HCN), 71% produced ammonia and 79% showed a halo of carboxymethyl cellulose (CMC) degradation. Zea mays L. growth promotion under water stress (30% of field capacity) was achieved by two strains of Bacillus spp. This is the first report to describe cacti-associated bacteria from Brazilian semi-arid with plant growth-promoting abilities.


Subject(s)
Bacteria/isolation & purification , Cactaceae/microbiology , Plant Growth Regulators/metabolism , Zea mays/growth & development , Ammonia/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Brazil , Droughts , Hydrogen Cyanide/metabolism , Indoleacetic Acids/metabolism , Molecular Sequence Data , Water/metabolism , Zea mays/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...