Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 24(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38931636

ABSTRACT

The phonocardiogram (PCG) can be used as an affordable way to monitor heart conditions. This study proposes the training and testing of several classifiers based on SVMs (support vector machines), k-NN (k-Nearest Neighbor), and NNs (neural networks) to perform binary ("Normal"/"Pathologic") and multiclass ("Normal", "CAD" (coronary artery disease), "MVP" (mitral valve prolapse), and "Benign" (benign murmurs)) classification of PCG signals, without heart sound segmentation algorithms. Two datasets of 482 and 826 PCG signals from the Physionet/CinC 2016 dataset are used to train the binary and multiclass classifiers, respectively. Each PCG signal is pre-processed, with spike removal, denoising, filtering, and normalization; afterward, it is divided into 5 s frames with a 1 s shift. Subsequently, a feature set is extracted from each frame to train and test the binary and multiclass classifiers. Concerning the binary classification, the trained classifiers yielded accuracies ranging from 92.4 to 98.7% on the test set, with memory occupations from 92.7 kB to 11.1 MB. Regarding the multiclass classification, the trained classifiers achieved accuracies spanning from 95.3 to 98.6% on the test set, occupying a memory portion from 233 kB to 14.1 MB. The NNs trained and tested in this work offer the best trade-off between performance and memory occupation, whereas the trained k-NN models obtained the best performance at the cost of large memory occupation (up to 14.1 MB). The classifiers' performance slightly depends on the signal quality, since a denoising step is performed during pre-processing. To this end, the signal-to-noise ratio (SNR) was acquired before and after the denoising, indicating an improvement between 15 and 30 dB. The trained and tested models occupy relatively little memory, enabling their implementation in resource-limited systems.


Subject(s)
Algorithms , Machine Learning , Neural Networks, Computer , Signal Processing, Computer-Assisted , Support Vector Machine , Wearable Electronic Devices , Humans , Phonocardiography/methods
2.
Sensors (Basel) ; 24(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38676044

ABSTRACT

This research paper delves into the effectiveness and impact of behavior change techniques fostered by information technologies, particularly wearables and Internet of Things (IoT) devices, within the realms of engineering and computer science. By conducting a comprehensive review of the relevant literature sourced from the Scopus database, this study aims to elucidate the mechanisms and strategies employed by these technologies to facilitate behavior change and their potential benefits to individuals and society. Through statistical measurements and related works, our work explores the trends over a span of two decades, from 2000 to 2023, to understand the evolving landscape of behavior change techniques in wearable and IoT technologies. A specific focus is placed on a case study examining the application of behavior change techniques (BCTs) for monitoring vital signs using wearables, underscoring the relevance and urgency of further investigation in this critical intersection of technology and human behavior. The findings shed light on the promising role of wearables and IoT devices for promoting positive behavior modifications and improving individuals' overall well-being and highlighting the need for continued research and development in this area to harness the full potential of technology for societal benefit.


Subject(s)
Internet of Things , Wearable Electronic Devices , Humans
3.
Sensors (Basel) ; 23(16)2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37631730

ABSTRACT

A global health emergency resulted from the COVID-19 epidemic. Image recognition techniques are a useful tool for limiting the spread of the pandemic; indeed, the World Health Organization (WHO) recommends the use of face masks in public places as a form of protection against contagion. Hence, innovative systems and algorithms were deployed to rapidly screen a large number of people with faces covered by masks. In this article, we analyze the current state of research and future directions in algorithms and systems for masked-face recognition. First, the paper discusses the importance and applications of facial and face mask recognition, introducing the main approaches. Afterward, we review the recent facial recognition frameworks and systems based on Convolution Neural Networks, deep learning, machine learning, and MobilNet techniques. In detail, we analyze and critically discuss recent scientific works and systems which employ machine learning (ML) and deep learning tools for promptly recognizing masked faces. Also, Internet of Things (IoT)-based sensors, implementing ML and DL algorithms, were described to keep track of the number of persons donning face masks and notify the proper authorities. Afterward, the main challenges and open issues that should be solved in future studies and systems are discussed. Finally, comparative analysis and discussion are reported, providing useful insights for outlining the next generation of face recognition systems.


Subject(s)
COVID-19 , Facial Recognition , Internet of Things , Humans , Pandemics/prevention & control , Algorithms
4.
Article in English | MEDLINE | ID: mdl-37047884

ABSTRACT

This paper looks at wireless sensor networks (WSNs) in healthcare, where they can monitor patients remotely. WSNs are considered one of the most promising technologies due to their flexibility and autonomy in communication. However, routing protocols in WSNs must be energy-efficient, with a minimal quality of service, so as not to compromise patient care. The main objective of this work is to compare two work schemes in the routing protocol algorithm in WSNs (cooperative and collaborative) in a home environment for monitoring the conditions of the elderly. The study aims to optimize the performance of the algorithm and the ease of use for people while analyzing the impact of the sensor network on the analysis of vital signs daily using medical equipment. We found relationships between vital sign metrics that have a more significant impact in the presence of a monitoring system. Finally, we conduct a performance analysis of both schemes proposed for the home tracking application and study their usability from the user's point of view.


Subject(s)
Computer Communication Networks , Wireless Technology , Humans , Aged , Algorithms
5.
Sensors (Basel) ; 23(4)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36850453

ABSTRACT

A quantitative evaluation of kinetic parameters, the joint's range of motion, heart rate, and breathing rate, can be employed in sports performance tracking and rehabilitation monitoring following injuries or surgical operations. However, many of the current detection systems are expensive and designed for clinical use, requiring the presence of a physician and medical staff to assist users in the device's positioning and measurements. The goal of wearable sensors is to overcome the limitations of current devices, enabling the acquisition of a user's vital signs directly from the body in an accurate and non-invasive way. In sports activities, wearable sensors allow athletes to monitor performance and body movements objectively, going beyond the coach's subjective evaluation limits. The main goal of this review paper is to provide a comprehensive overview of wearable technologies and sensing systems to detect and monitor the physiological parameters of patients during post-operative rehabilitation and athletes' training, and to present evidence that supports the efficacy of this technology for healthcare applications. First, a classification of the human physiological parameters acquired from the human body by sensors attached to sensitive skin locations or worn as a part of garments is introduced, carrying important feedback on the user's health status. Then, a detailed description of the electromechanical transduction mechanisms allows a comparison of the technologies used in wearable applications to monitor sports and rehabilitation activities. This paves the way for an analysis of wearable technologies, providing a comprehensive comparison of the current state of the art of available sensors and systems. Comparative and statistical analyses are provided to point out useful insights for defining the best technologies and solutions for monitoring body movements. Lastly, the presented review is compared with similar ones reported in the literature to highlight its strengths and novelties.


Subject(s)
Athletes , Athletic Performance , Humans , Health Status , Heart Rate , Kinetics
6.
J Imaging ; 9(1)2023 Jan 08.
Article in English | MEDLINE | ID: mdl-36662112

ABSTRACT

The prevalence of neck pain, a chronic musculoskeletal disease, has significantly increased due to the uncontrollable use of social media (SM) devices. The use of SM devices by younger generations increased enormously during the COVID-19 pandemic, being-in some cases-the only possibility for maintaining interpersonal, social, and friendship relationships. This study aimed to predict the occurrence of neck pain and its correlation with the intensive use of SM devices. It is based on nine quantitative parameters extracted from the retrospective X-ray images. The three parameters related to angle_1 (i.e., the angle between the global horizontal and the vector pointing from C7 vertebra to the occipito-cervical joint), angle_2 (i.e., the angle between the global horizontal and the vector pointing from C1 vertebra to the occipito-cervical joint), and the area between them were measured from the shape of the neck vertebrae, while the rest of the parameters were extracted from the images using the gray-level co-occurrence matrix (GLCM). In addition, the users' ages and the duration of the SM usage (H.mean) were also considered. The decision tree (DT) machine-learning algorithm was employed to predict the abnormal cases (painful subjects) against the normal ones (no pain). The results showed that angle_1, area, and the image contrast significantly increased statistically with the time of SM-device usage, precisely in the range of 2 to 9 h. The DT showed a promising result demonstrated by classification accuracy and F1-scores of 94% and 0.95, respectively. Our findings confirmed that the objectively detected parameters, which elucidate the negative impacts of SM-device usage on neck pain, can be predicted by DT machine learning.

7.
Sensors (Basel) ; 22(24)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36560322

ABSTRACT

Breathing monitoring is crucial for evaluating a patient's health status. The technologies commonly used to monitor respiration are costly, bulky, obtrusive, and inaccurate, mainly when the user moves. Consequently, efforts have been devoted to providing new solutions and methodologies to overcome these limitations. These methods have several uses, including healthcare monitoring, measuring athletic performance, and aiding patients with respiratory diseases, such as COPD (chronic obtrusive pulmonary disease), sleep apnea, etc. Breathing-induced chest movements can be measured noninvasively and discreetly using inertial sensors. This research work presents the development and testing of an inertia-based chest band for breathing monitoring through a differential approach. The device comprises two IMUs (inertial measurement units) placed on the patient's chest and back to determine the differential inertial signal, carrying out information detection about the breathing activity. The chest band includes a low-power microcontroller section to acquire inertial data from the two IMUs and process them to extract the breathing parameters (i.e., RR-respiration rate; TI/TE-inhalation/exhalation time; IER-inhalation-to-exhalation time; V-flow rate), using the back IMU as a reference. A BLE transceiver wirelessly transmits the acquired breathing parameters to a mobile application. Finally, the test results demonstrate the effectiveness of the used dual-inertia solution; correlation and Bland-Altman analyses were performed on the RR measurements from the chest band and the reference, demonstrating a high correlation (r¯ = 0.92) and low mean difference (MD¯ = -0.27 BrPM (breaths per minute)), limits of agreement (LoA¯ = +1.16/-1.75 BrPM), and mean absolute error (MAE¯ = 1.15%). Additionally, the experimental results demonstrated that the developed device correctly measured the other breathing parameters (TI, TE, IER, and V), keeping an MAE of ≤5%. The obtained results indicated that the developed chest band is a viable solution for long-term breathing monitoring, both in stationary and moving users.


Subject(s)
Sleep Apnea Syndromes , Wearable Electronic Devices , Humans , Respiration , Respiratory Rate , Exhalation
8.
Micromachines (Basel) ; 13(8)2022 Aug 17.
Article in English | MEDLINE | ID: mdl-36014257

ABSTRACT

Sleep is crucial for human health from metabolic, mental, emotional, and social points of view; obtaining good sleep in terms of quality and duration is fundamental for maintaining a good life quality. Over the years, several systems have been proposed in the scientific literature and on the market to derive metrics used to quantify sleep quality as well as detect sleep disturbances and disorders. In this field, wearable systems have an important role in the discreet, accurate, and long-term detection of biophysical markers useful to determine sleep quality. This paper presents the current state-of-the-art wearable systems and software tools for sleep staging and detecting sleep disorders and dysfunctions. At first, the paper discusses sleep's functions and the importance of monitoring sleep to detect eventual sleep disturbance and disorders. Afterward, an overview of prototype and commercial headband-like wearable devices to monitor sleep is presented, both reported in the scientific literature and on the market, allowing unobtrusive and accurate detection of sleep quality markers. Furthermore, a survey of scientific works related the effect of the COVID-19 pandemic on sleep functions, attributable to both infection and lifestyle changes. In addition, a survey of algorithms for sleep staging and detecting sleep disorders is introduced based on an analysis of single or multiple biosignals (EEG-electroencephalography, ECG-electrocardiography, EMG-electromyography, EOG-electrooculography, etc.). Lastly, comparative analyses and insights are provided to determine the future trends related to sleep monitoring systems.

9.
Article in English | MEDLINE | ID: mdl-36011599

ABSTRACT

Sensor networks are deployed in people's homes to make life easier and more comfortable and secure. They might represent an interesting approach for elderly care as well. This work highlights the benefits of a sensor network implemented in the homes of a group of users between 55 and 75 years old, which encompasses a simple home energy optimization algorithm based on user behavior. We analyze variables related to vital signs to establish users' comfort and tranquility thresholds. We statistically study the perception of security that users exhibit, differentiating between men and women, examining how it affects the person's development at home, as well as the reactivity of the sensor algorithm, to optimize its performance. The proposed algorithm is analyzed under certain performance metrics, showing an improvement of 15% over a sensor network under the same conditions. We look at and quantify the usefulness of accurate alerts on each sensor and how it reflects in the users' perceptions (for men and women separately). This study analyzes a simple, low-cost, and easy-to-implement home-based sensor network optimized with an adaptive energy optimization algorithm to improve the lives of older adults, which is capable of sending alerts of possible accidents or intruders with the highest efficiency.


Subject(s)
Algorithms , Perception , Aged , Female , Humans , Male , Middle Aged
10.
J Pharm Biomed Anal ; 220: 114972, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-35961211

ABSTRACT

Chiral ß-nitro alcohols are key intermediates in the synthesis of a wide range of active pharmaceutical ingredients. Despite their massive use for pharmaceutical applications, in-depth kinetics studies concerning their stability during formation and transformation reactions are scarce in the literature. In this study, the (1R,2S)-1-(m-benzyloxy)-2-nitro-1-propanol) (BNA), the precursor of the metaraminol, was selected as a molecular model and the retro-Henry reaction was explored by a multidisciplinary approach involving HPLC, electronic circular dichroism and theoretical methods. The enantio-, diastereo-, and chemo-selective high-performance liquid chromatographic method for determining the purity of ß-nitro alcohol during its formation and degradation is based on the use of an amylose-derived chiral stationary phase under normal-phase eluent conditions. The influence of various factors (e.g. temperature, type of reaction solvent, basic and acid catalysts) on the degradation kinetics has been investigated. The retro-Henry reaction was found to be the major degradation of BNA, under spontaneous, solvent- and base-catalyzed conditions, resulting in the formation of its precursors 3-benzyloxybenzaldehyde and nitroethane.


Subject(s)
Amylose , Metaraminol , Amylose/chemistry , Catalysis , Chromatography, High Pressure Liquid/methods , Circular Dichroism , Electronics , Ethanol/chemistry , Kinetics , Pharmaceutical Preparations , Solvents , Stereoisomerism
11.
Sensors (Basel) ; 22(7)2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35408287

ABSTRACT

This study addresses sensor allocation by analyzing exponential stability for discrete-time teleoperation systems. Previous studies mostly concentrate on the continuous-time teleoperation systems and neglect the management of significant practical phenomena, such as data-swap, the effect of sampling rates of samplers, and refresh rates of actuators on the system's stability. A multi-rate sampling approach is proposed in this study, given the isolation of the master and slave robots in teleoperation systems which may have different hardware restrictions. This architecture collects data through numerous sensors with various sampling rates, assuming that a continuous-time controller stabilizes a linear teleoperation system. The aim is to assign each position and velocity signals to sensors with different sampling rates and divide the state vector between sensors to guarantee the stability of the resulting multi-rate sampled-data teleoperation system. Sufficient Krasovskii-based conditions will be provided to preserve the exponential stability of the system. This problem will be transformed into a mixed-integer program with LMIs (linear matrix inequalities). These conditions are also used to design the observers for the multi-rate teleoperation systems whose estimation errors converge exponentially to the origin. The results are validated by numerical simulations which are useful in designing sensor networks for teleoperation systems.

12.
Sensors (Basel) ; 21(22)2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34833606

ABSTRACT

The detection of cracks is an important monitoring task in civil engineering infrastructure devoted to ensuring durability, structural safety, and integrity. It has been traditionally performed by visual inspection, and the measurement of crack width has been manually obtained with a crack-width comparator gauge (CWCG). Unfortunately, this technique is time-consuming, suffers from subjective judgement, and is error-prone due to the difficulty of ensuring a correct spatial measurement as the CWCG may not be correctly positioned in accordance with the crack orientation. Although algorithms for automatic crack detection have been developed, most of them have specifically focused on solving the segmentation problem through Deep Learning techniques failing to address the underlying problem: crack width evaluation, which is critical for the assessment of civil structures. This paper proposes a novel automated method for surface cracking width measurement based on digital image processing techniques. Our proposal consists of three stages: anisotropic smoothing, segmentation, and stabilized central points by k-means adjustment and allows the characterization of both crack width and curvature-related orientation. The method is validated by assessing the surface cracking of fiber-reinforced earthen construction materials. The preliminary results show that the proposal is robust, efficient, and highly accurate at estimating crack width in digital images. The method effectively discards false cracks and detects real ones as small as 0.15 mm width regardless of the lighting conditions.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Construction Materials
13.
Sensors (Basel) ; 21(16)2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34450714

ABSTRACT

This paper reports on the progress of a wearable assistive technology (AT) device designed to enhance the independent, safe, and efficient mobility of blind and visually impaired pedestrians in outdoor environments. Such device exploits the smartphone's positioning and computing capabilities to locate and guide users along urban settings. The necessary navigation instructions to reach a destination are encoded as vibrating patterns which are conveyed to the user via a foot-placed tactile interface. To determine the performance of the proposed AT device, two user experiments were conducted. The first one requested a group of 20 voluntary normally sighted subjects to recognize the feedback provided by the tactile-foot interface. The results showed recognition rates over 93%. The second experiment involved two blind voluntary subjects which were assisted to find target destinations along public urban pathways. Results show that the subjects successfully accomplished the task and suggest that blind and visually impaired pedestrians might find the AT device and its concept approach useful, friendly, fast to master, and easy to use.


Subject(s)
Pedestrians , Self-Help Devices , Visually Impaired Persons , Wearable Electronic Devices , Humans , Smartphone
14.
Sensors (Basel) ; 21(13)2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34283073

ABSTRACT

The evolution of low power electronics and the availability of new smart materials are opening new frontiers to develop wearable systems for medical applications, lifestyle monitoring, and performance detection. This paper presents the development and realization of a novel smart insole for monitoring the plantar pressure distribution and gait parameters; indeed, it includes a piezoresistive sensing matrix based on a Velostat layer for transducing applied pressure into an electric signal. At first, an accurate and complete characterization of Velostat-based pressure sensors is reported as a function of sizes, support material, and pressure trend. The realization and testing of a low-cost and reliable piezoresistive sensing matrix based on a sandwich structure are discussed. This last is interfaced with a low power conditioning and processing section based on an Arduino Lilypad board and an analog multiplexer for acquiring the pressure data. The insole includes a 3-axis capacitive accelerometer for detecting the gait parameters (swing time and stance phase time) featuring the walking. A Bluetooth Low Energy (BLE) 5.0 module is included for transmitting in real-time the acquired data toward a PC, tablet or smartphone, for displaying and processing them using a custom Processing® application. Moreover, the smart insole is equipped with a piezoelectric harvesting section for scavenging energy from walking. The onfield tests indicate that for a walking speed higher than 1 ms-1, the device's power requirements (i.e., P¯=5.84 mW) was fulfilled. However, more than 9 days of autonomy are guaranteed by the integrated 380-mAh Lipo battery in the total absence of energy contributions from the harvesting section.


Subject(s)
Gait Analysis , Shoes , Electric Power Supplies , Gait , Walking
15.
Sensors (Basel) ; 21(6)2021 Mar 20.
Article in English | MEDLINE | ID: mdl-33804782

ABSTRACT

Rural pipelines dedicated to water distribution, that is, waterworks, are essential for agriculture, notably plantations and greenhouse cultivation. Water is a primary resource for agriculture, and its optimized management is a key aspect. Saving water dispersion is not only an economic problem but also an environmental one. Spectral estimation of leakage is based on processing signals captured from sensors and/or transducers generally mounted on pipelines. There are different techniques capable of processing signals and displaying the actual position of leaks. Not all algorithms are suitable for all signals. That means, for pipelines located underground, for example, external vibrations affect the spectral response quality; then, depending on external vibrations/noises and flow velocity within pipeline, one should choose a suitable algorithm that fits better with the expected results in terms of leak position on the pipeline and expected time for localizing the leak. This paper presents findings related to the application of a decimated linear prediction (DLP) algorithm for agriculture and rural environments. In a certain manner, the application also detects the hydrodynamics of the water transportation. A general statement on the issue, DLP illustration, a real application and results are also included.

16.
Polymers (Basel) ; 13(5)2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33652841

ABSTRACT

In our previous study, an innovative method for sterilization, inertization, and valorization of the organic fraction of municipal solid waste (OFMSW), to be recycled in the production of composite panels, was developed. In this follow-up work, the effects of fire retardants on fire performance, durability, and the mechanical properties of the composite panels based on OFMSW and melamine-formaldehyde resin were investigated. The performance of panels without fire retardants (control panels) was compared to panels containing either mono-ammonium phosphate (PFR) or aluminium trihydrate (ATH) at a mass fraction of 1% and 10% (modified panels). As shown by cone calorimetry, the total heat released was already low (about 31 MJ/m2 at 50 kW/m2) in the control panels, further decreased in the modified panels with the addition of fire retardants, and reached the lowest value (about 1.4 MJ/m2) with 10% mass fraction of PFR. Hence, the addition of fire retardants had a beneficial effect on the response to fire of the panels; however, it also reduced the mechanical properties of the panels as measured by flexural tests. The deterioration of the mechanical properties was particularly obvious in panels containing 10% mass fraction of fire retardants, and they were further degraded by artificial accelerated weathering, carried out by boiling tests. Ultimately, the panels containing PFR at a mass fraction of 1% offered the best balance of fire resistance, durability, and mechanical performance within the formulations investigated in this study.

17.
Sensors (Basel) ; 20(13)2020 Jun 28.
Article in English | MEDLINE | ID: mdl-32605300

ABSTRACT

The huge spreading of Internet of things (IoT)-oriented modern technologies is revolutionizing all fields of human activities, leading several benefits and allowing to strongly optimize classic productive processes. The agriculture field is also affected by these technological advances, resulting in better water and fertilizers' usage and so huge improvements of both quality and yield of the crops. In this manuscript, the development of an IoT-based smart traceability and farm management system is described, which calibrates the irrigations and fertigation operations as a function of crop typology, growth phase, soil and environment parameters and weather information; a suitable software architecture was developed to support the system decision-making process, also based on data collected on-field by a properly designed solar-powered wireless sensor network (WSN). The WSN nodes were realized by using the ESP8266 NodeMCU module exploiting its microcontroller functionalities and Wi-Fi connectivity. Thanks to a properly sized solar power supply system and an optimized scheduling scheme, a long node autonomy was guaranteed, as experimentally verified by its power consumption measures, thus reducing WSN maintenance. In addition, a literature analysis on the most used wireless technologies for agri-food products' traceability is reported, together with the design and testing of a Bluetooth low energy (BLE) low-cost sensor tag to be applied into the containers of agri-food products, just collected from the fields or already processed, to monitor the main parameters indicative of any failure or spoiling over time along the supply chain. A mobile application was developed for monitoring the tracking information and storing conditions of the agri-food products. Test results in real-operative scenarios demonstrate the proper operation of the BLE smart tag prototype and tracking system.

18.
Polymers (Basel) ; 12(6)2020 Jun 24.
Article in English | MEDLINE | ID: mdl-32599918

ABSTRACT

This work represents an innovative study that, for the first time, explores the possibility to use waste flours to produce thermoplastic polymeric bio-films. To the best of our knowledge, this is the first time that waste flours, derived from bakeries, pizzerias or pasta factories, have been proposed for the production of bio-polymers, as a replacement of neat starch. To this aim, durum waste flour derived from a pasta factory, soft waste flour derived from pizzerias and neat maize starch used as control material were firstly analyzed from dimensional, morphological and chemical points of view. Afterwards, waste flour films were produced by the addition of a nature-based plasticizer, glycerol. Mechanical characterization of the plasticized thermoplastic films, produced by compression molding, evidenced low performances, even in the case of the neat maize starch. In order to improve the mechanical properties, the possibility to include polylactic acid and cardanol-based plasticizer was also investigated. Mass transport properties of all the produced bio-films were investigated by measuring their water vapor permeability and hygroscopic absorption. The durability properties of the bio-films were assessed by accelerated ageing tests, while the bio-degradability of the waste-based films was evaluated by measuring the solubility and the degradation in water. The physicochemical analyses of the novel bio-films evidenced good mechanical properties; specifically, the waste-based films showed a lower hygroscopic absorption and water solubility than those of the blends containing neat starch.

19.
Waste Manag ; 109: 212-221, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32413725

ABSTRACT

This paper reports the preparation of newly synthesized bio-epoxy monomers, suitable for replacing petrochemical-derived epoxy resins. An original green method able to produce epoxy monomers starting from neat carbohydrates, waste flours, and even from the organic fraction of municipal solid waste (OFMSW), was here proposed. Hence, for the first time, the epoxidation of carbohydrates was attained only through the exposition to UV and ozone radiation, without using any organic solvent to carry out the reaction. Besides the innovation in the epoxidation method, this work explored the possibility of valorizing waste materials, by recycling carbohydrate scraps; in particular, the exposition of waste flours and municipal solid waste to UV and ozone and their consequent epoxidation allowed obtaining green precursors for the production of a bio-based epoxy resin. Applicability and suitability of the synthesized compounds for epoxy monomers were investigated by curing experiments with a selected amount of a model cycloaliphatic amine-type hardener, i.e. isophorodiamine (IPDA).


Subject(s)
Refuse Disposal , Solid Waste , Anaerobiosis , Epoxy Resins , Recycling
20.
Polymers (Basel) ; 11(11)2019 Nov 08.
Article in English | MEDLINE | ID: mdl-31717280

ABSTRACT

Following the innovative research activity carried out in the framework of the POIROT (Italian acronym of dOmotic Platform for Inertization and tRaceability of Organic wasTe) Project, this work aims to optimize the composition of the blends between the organic fraction of municipal solid waste (OFMSW) and formaldehyde-based resins, in order to improve the durability properties. To this aim, in this work, commercial urea-formaldehyde and melamine-formaldehyde powder polymers have been proposed for the inertization of the OFMSW, according to the previous optimized OFMSW-transformation process. A preliminary study about the mechanical properties of the composite panels produced with the different resins was carried out by evaluating compressive, flexural, and tensile performances of the panels. Artificial weathering by cyclic (heating-cooling) and boiling tests were carried out and the mechanical properties were evaluated in order to assess the resistance of the panels to water and humidity. The melamine-formaldehyde based resin had the best performances also when subjected to the weathering tests and despite the higher content of resin in the composites, the panels produced with melamine-formaldehyde have the lowest values of release of formaldehyde minimizing their potential hazard level.

SELECTION OF CITATIONS
SEARCH DETAIL
...