Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
ACS Med Chem Lett ; 15(3): 396-405, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38505850

ABSTRACT

Selecting a known HTS hit with the pyrazolo[1,5-a]pyrimidine core, our project was started from CMPPE, and its optimization was driven by a ligand-based pharmacophore model developed on the basis of published GABAB positive allosteric modulators (PAMs). Our primary goal was to improve the potency by finding new enthalpic interactions. Therefore, we included the lipophilic ligand efficiency (LLE or LipE) as an objective function in the optimization that led to a carboxylic acid derivative (34). This lead candidate offers the possibility to improve potency without drastically inflating the physicochemical properties. Although the discovery of the novel carboxyl feature was surprising, it turned out to be an important element of the GABAB PAM pharmacophore that can be perfectly explained based on the new protein structures. Rationalizing the binding mode of 34, we analyzed the intersubunit PAM binding site of GABAB receptor using the publicly available experimental structures.

2.
J Med Chem ; 66(23): 16276-16302, 2023 12 14.
Article in English | MEDLINE | ID: mdl-37989278

ABSTRACT

During optimization of a previously identified lead compound, attempts were made to optimize the reactive indole structural element, the suboptimal metabolic stability, as well as the low kinetic solubility. It was concluded that the indole was important for in vitro activity. With the aim of further improvements, more thorough modifications were also carried out. As a result, a new chemotype (the azetidinespirochromone family) was identified, which proved to be 1 order of magnitude less lipophilic retaining the same high level of in vitro potency as the lead series itself, however, with improved metabolic stability and kinetic solubility. Compound 53 showed the most balanced physicochemical and pharmacological profile with significant in vivo efficacy in the scopolamine-induced amnesia test. Based on these promising results, cognitive enhancement through the positive modulation of α7 nAChRs appears to be a viable approach. Compound 53 was selected to be a preclinical development candidate (as RGH-560).


Subject(s)
Receptors, Nicotinic , alpha7 Nicotinic Acetylcholine Receptor , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Allosteric Regulation , Receptors, Nicotinic/metabolism , Indoles/pharmacology
3.
Eur J Med Chem ; 222: 113560, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34111828

ABSTRACT

HTS campaign of the corporate compound collection resulted in a novel, oxalic acid diamide scaffold of α7 nACh receptor positive allosteric modulators. During the hit expansion, several derivatives, such as 4, 11, 17 demonstrated not only high in vitro potency, but also in vivo efficacy in the mouse place recognition test. The advanced hit molecule 11 was further optimized by the elimination of the putatively mutagenic aromatic-amine building block that resulted in a novel, aminomethylindole compound family. The most balanced physico-chemical and pharmacological profile was found in case of compound 55. Docking study revealed an intersubunit binding site to be the most probable for our compounds. 55 demonstrated favorable cognitive enhancing profile not only in scopolamine-induced amnesia (place recognition test in mice) but also in natural forgetting (novel object recognition test in rats). Compound 55 was, furthermore, active in a cognitive paradigm of high translational value, namely in the rat touch screen visual discrimination test. Therefore, 55 was selected as a lead compound for further optimization. Based on the obtained favorable results, the invented aminomethylindole cluster may provide a viable approach for cognitive enhancement through positive allosteric modulation of α7 nAChRs.


Subject(s)
Amides/pharmacology , Drug Discovery , High-Throughput Screening Assays , Oxalic Acid/pharmacology , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Allosteric Regulation/drug effects , Amides/chemical synthesis , Amides/chemistry , Animals , Dose-Response Relationship, Drug , Humans , Male , Molecular Structure , Oxalic Acid/chemical synthesis , Oxalic Acid/chemistry , Rats , Rats, Wistar , Structure-Activity Relationship
4.
Bioorg Chem ; 111: 104832, 2021 06.
Article in English | MEDLINE | ID: mdl-33826962

ABSTRACT

In addition to the orthosteric binding pocket (OBP) of GPCRs, recent structural studies have revealed that there are several allosteric sites available for pharmacological intervention. The secondary binding pocket (SBP) of aminergic GPCRs is located in the extracellular vestibule of these receptors, and it has been suggested to be a potential selectivity pocket for bitopic ligands. Here, we applied a virtual screening protocol based on fragment docking to the SBP of the orthosteric ligand-receptor complex. This strategy was employed for a number of aminergic receptors. First, we designed dopamine D3 preferring bitopic compounds from a D2 selective orthosteric ligand. Next, we designed 5-HT2B selective bitopic compounds starting from the 5-HT1B preferring ergoline core of LSD. Comparing the serotonergic profiles of the new derivatives to that of LSD, we found that these derivatives became significantly biased towards the desired 5-HT2B receptor target. Finally, addressing the known limitations of H1 antihistamines, our protocol was successfully used to eliminate the well-known side effects related to the muscarinic M1 activity of amitriptyline while preserving H1 potency in some of the designed bitopic compounds. These applications highlight the usefulness of our new virtual screening protocol and offer a powerful strategy towards bitopic GPCR ligands with designed receptor profiles.


Subject(s)
Pyrimidinones/pharmacology , Receptors, G-Protein-Coupled/antagonists & inhibitors , Urea/pharmacology , Allosteric Site/drug effects , Dose-Response Relationship, Drug , Humans , Ligands , Molecular Structure , Pyrimidinones/chemical synthesis , Pyrimidinones/chemistry , Receptors, G-Protein-Coupled/metabolism , Structure-Activity Relationship , Urea/analogs & derivatives , Urea/chemistry
5.
Eur J Med Chem ; 214: 113189, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33540354

ABSTRACT

The paper focuses on the scaffold hopping-based discovery and characterization of novel nicotinic alpha 7 receptor positive modulator (α7 nAChR PAM) ligands around the reference molecule (A-867744). First, substantial efforts were carried out to assess the importance of the various pharmacophoric elements on the in vitro potency (SAR evaluation) by chemical modifications. Subsequently, several new derivatives with versatile, heteroaromatic central cores were synthesized and characterized. A promising, pyrazole-containing new chemotype with good physicochemical and in vitro parameters was identified. Retrospective analysis based on homology modeling was also carried out. Besides its favorable in vitro characteristics, the most advanced derivative 69 also showed in vivo efficacy in a rodent model of cognition (scopolamine-induced amnesia in the mouse place recognition test) and acceptable pharmacokinetic properties. Based on the in vivo data, the resulting molecule with advanced drug-like characteristics has the possibility to improve cognitive performance in a biologically relevant dose range, further strengthening the view of the supportive role of α7 nACh receptors in the cognitive processes.


Subject(s)
Drug Discovery , Nicotinic Agonists/pharmacology , Pyrazoles/pharmacology , Administration, Oral , Allosteric Regulation/drug effects , Amnesia/chemically induced , Amnesia/drug therapy , Amnesia/metabolism , Animals , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Male , Maze Learning/drug effects , Mice , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Molecular Structure , Nicotinic Agonists/administration & dosage , Nicotinic Agonists/metabolism , Pyrazoles/administration & dosage , Pyrazoles/metabolism , Rats , Rats, Wistar , Scopolamine , Structure-Activity Relationship , alpha7 Nicotinic Acetylcholine Receptor
6.
Biomolecules ; 11(1)2021 01 14.
Article in English | MEDLINE | ID: mdl-33466844

ABSTRACT

Dopamine (DA), as one of the major neurotransmitters in the central nervous system (CNS) and periphery, exerts its actions through five types of receptors which belong to two major subfamilies such as D1-like (i.e., D1 and D5 receptors) and D2-like (i.e., D2, D3 and D4) receptors. Dopamine D3 receptor (D3R) was cloned 30 years ago, and its distribution in the CNS and in the periphery, molecular structure, cellular signaling mechanisms have been largely explored. Involvement of D3Rs has been recognized in several CNS functions such as movement control, cognition, learning, reward, emotional regulation and social behavior. D3Rs have become a promising target of drug research and great efforts have been made to obtain high affinity ligands (selective agonists, partial agonists and antagonists) in order to elucidate D3R functions. There has been a strong drive behind the efforts to find drug-like compounds with high affinity and selectivity and various functionality for D3Rs in the hope that they would have potential treatment options in CNS diseases such as schizophrenia, drug abuse, Parkinson's disease, depression, and restless leg syndrome. In this review, we provide an overview and update of the major aspects of research related to D3Rs: distribution in the CNS and periphery, signaling and molecular properties, the status of ligands available for D3R research (agonists, antagonists and partial agonists), behavioral functions of D3Rs, the role in neural networks, and we provide a summary on how the D3R-related drug research has been translated to human therapy.


Subject(s)
Biomedical Research , Central Nervous System Diseases/metabolism , Neurons/metabolism , Receptors, Dopamine D3/metabolism , Translational Research, Biomedical , Animals , Brain/metabolism , Brain/pathology , Humans , Receptors, Dopamine D3/antagonists & inhibitors , Receptors, Dopamine D3/chemistry
7.
Anal Biochem ; 566: 126-132, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30452893

ABSTRACT

Cell-based assays against cell surface receptor targets are essential in vitro models of target-based drug discovery. At the lead generation phase large-scale functional screening assays monitoring individual cellular readouts detect interactions between the compounds and the predefined pathways but might lack sufficient sensitivity owing to the complexity of downstream signaling pathways. Cellular label-free assays offer advantages over labeled detection approaches as they reflect whole-cell responses without the prerequisite of detecting only a single cellular analyte and introducing additional genetic manipulations in favor of the chosen detection method. The combination of a label-free assay and labeled assays might integrate the advantageous characteristics of both approaches with regards to added pharmacological information and a bigger pool of chemical starting material. Here we report multiplexing of dynamic mass redistribution label-free technology with HTRF-based cAMP detection on an alpha2c adrenergic receptor expressing cell line. Besides describing the challenging assay development work associated with the set goal, a pilot screening campaign on ca. 1600 compounds is also presented. The combined assay demonstrated the ability to detect relevant activities in both readouts. Interpretation of the results as well as an outlook for further possible opportunities and applications are also discussed.


Subject(s)
Cyclic AMP/chemistry , Drug Discovery/methods , High-Throughput Screening Assays/methods , Single-Cell Analysis/methods , Animals , Biological Assay/methods , Biosensing Techniques/methods , CHO Cells , Cricetulus , Cyclic AMP/metabolism , Databases, Pharmaceutical , Fluorescence , Pharmaceutical Preparations/chemistry , Receptors, Adrenergic, alpha-2/metabolism
8.
Anal Biochem ; 507: 33-9, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27235172

ABSTRACT

Cell-based assays for G-protein-coupled receptor (GPCR) activation applied in high-throughput screening (HTS) monitor various readouts for second messengers or intracellular effectors. Recently, our understanding of diverging signaling pathways downstream of receptor activation and the capability of small molecules to selectively modulate signaling routes has increased substantially, underlining the importance of selecting appropriate readouts in cellular functional screens. To minimize the rate of false negatives in large-scale screening campaigns, it is crucial to maximize the chance of a ligand being detected, and generally applicable methods for detecting multiple analytes from a single well might serve this purpose. The few assays developed so far based on multiplexed GPCR readouts are limited to only certain applications and usually rely on genetic manipulations hindering screening in native or native-like cellular systems. Here we describe a more generally applicable and HTS-compatible homogeneous assay based on the combination of fluorometric detection of [Ca(2+)] with subsequent homogeneous time-resolved fluorescence (HTRF) cAMP readout in the same well. Besides describing development and validation of the assay, using a cell line recombinantly expressing the human PTH1 receptor screening of a small library is also presented, demonstrating the robustness and HTS compatibility of the novel paradigm.


Subject(s)
Calcium/analysis , Fluorescence , High-Throughput Screening Assays , Cells, Cultured , Cyclic AMP/analysis , Cyclic AMP/metabolism , HEK293 Cells , Humans , Receptor, Parathyroid Hormone, Type 1/metabolism , Time Factors
9.
Bioorg Med Chem ; 23(14): 3991-9, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-25648685

ABSTRACT

Fragment-based drug discovery has emerged as an alternative to conventional lead identification and optimization strategies generally supported by biophysical detection techniques. Membrane targets like G protein-coupled receptors (GPCRs), however, offer challenges in lack of generic immobilization or stabilization methods for the dynamic, membrane-bound supramolecular complexes. Also modeling of different functional states of GPCRs proved to be a challenging task. Here we report a functional cell-based high concentration screening campaign for the identification of adrenergic α2C receptor agonists compared with the virtual screening of the same ligand set against an active-like homology model of the α2C receptor. The conventional calcium mobilization-based assay identified active fragments with a similar incidence to several other reported fragment screens on GPCRs. 16 out of 3071 screened fragments turned out as specific ligands of α2C, two of which were identified by virtual screening as well and several of the hits possessed surprisingly high affinity and ligand efficiency. Our results indicate that in vitro biological assays can be utilized in the fragment hit identification process for GPCR targets.


Subject(s)
Adrenergic alpha-2 Receptor Agonists/pharmacology , Drug Evaluation, Preclinical/methods , Receptors, Adrenergic, alpha-2/metabolism , Adrenergic alpha-2 Receptor Agonists/chemistry , Animals , CHO Cells/drug effects , Cricetulus , Humans , Ligands , Protein Conformation , Receptors, Adrenergic, alpha-2/chemistry , Receptors, Adrenergic, alpha-2/genetics , Structure-Activity Relationship , User-Computer Interface
10.
Expert Opin Drug Discov ; 8(7): 811-20, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23621346

ABSTRACT

INTRODUCTION: G-protein-coupled receptors (GPCRs) form one of the largest groups of potential targets for novel medications. Low druggability of many GPCR targets and inefficient sampling of chemical space in high-throughput screening expertise however often hinder discovery of drug discovery leads for GPCRs. Fragment-based drug discovery is an alternative approach to the conventional strategy and has proven its efficiency on several enzyme targets. Based on developments in biophysical screening techniques, receptor stabilization and in vitro assays, virtual and experimental fragment screening and fragment-based lead discovery recently became applicable for GPCR targets. AREAS COVERED: This article provides a review of the biophysical as well as biological detection techniques suitable to study GPCRs together with their applications to screen fragment libraries and identify fragment-size ligands of cell surface receptors. The article presents several recent examples including both virtual and experimental protocols for fragment hit discovery and early hit to lead progress. EXPERT OPINION: With the recent progress in biophysical detection techniques, the advantages of fragment-based drug discovery could be exploited for GPCR targets. Structural information on GPCRs will be more abundantly available for early stages of drug discovery projects, providing information on the binding process and efficiently supporting the progression of fragment hit to lead. In silico approaches in combination with biological assays can be used to address structurally challenging GPCRs and confirm biological relevance of interaction early in the drug discovery project.


Subject(s)
Drug Discovery/methods , Receptors, G-Protein-Coupled/chemistry , Computer Simulation , Humans , Ligands , Models, Theoretical , Receptors, G-Protein-Coupled/drug effects , Small Molecule Libraries
11.
Eur J Pharmacol ; 641(2-3): 135-41, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20534382

ABSTRACT

The transient receptor potential vanilloid 1 (TRPV1) receptor is activated by noxious heat, various endogenous mediators and exogenous irritants. The aim of the present study was to compare three TRPV1 receptor antagonists (SB705498, BCTC and AMG9810) in rat models of heat hyperalgesia. The behavioural noxious heat threshold, defined as the lowest temperature evoking nocifensive reaction, was measured with an increasing-temperature water bath. The effects of TRPV1 receptor antagonists were assessed in thermal hyperalgesia induced by the TRPV1 agonist resiniferatoxin (RTX), mild heat injury (51 degrees C, 20s) or plantar incision in rats. The control heat threshold was 43.2+/-0.4 degrees C. RTX induced an 8-10 degrees C decrease in heat threshold which was dose-dependently inhibited by oral pre-treatment with any of the TRPV1 receptor antagonists with a minimum effective dose of 1mg/kg. The mild heat injury-evoked 7-8 degrees C heat threshold drop was significantly reversed by all three antagonists injected i.p. as post-treatment. The minimum effective doses were as follows: SB705498 10, BCTC 3 and AMG9810 1mg/kg. Plantar incision-induced heat threshold drop (7-8 degrees C) was dose-dependently diminished by an oral post-treatment with any of the antagonists with minimum effective doses of 10, 3 and 3mg/kg, respectively. Assessment of RTX hyperalgesia by measurement of the paw withdrawal latency with a plantar test apparatus yielded 30 mg/kg minimum effective dose for each antagonist. In conclusion, measurement of the noxious heat threshold with the increasing-temperature water bath is suitable to sensitively detect the effects of TRPV1 receptor antagonists in thermal hyperalgesia models.


Subject(s)
Acrylamides/antagonists & inhibitors , Bridged Bicyclo Compounds, Heterocyclic/antagonists & inhibitors , Hot Temperature/adverse effects , Hyperalgesia/drug therapy , Pyrazines/antagonists & inhibitors , Pyridines/antagonists & inhibitors , TRPV Cation Channels/antagonists & inhibitors , Animals , Cold Temperature , Disease Models, Animal , Diterpenes/pharmacology , Dose-Response Relationship, Drug , Female , Hyperalgesia/chemically induced , Pain/drug therapy , Pyrrolidines/antagonists & inhibitors , Rats , Rats, Sprague-Dawley , Urea/analogs & derivatives , Urea/antagonists & inhibitors
12.
J Biomol Screen ; 12(8): 1068-73, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18087071

ABSTRACT

A novel technology for monitoring the changes of 3,'5'-adenosine cyclic monophosphate (cAMP) in live cells suitable for drug screening relies on the use of cyclic nucleotide-gated channels as biosensors coexpressed with the appropriate target receptor. The technique (termed BD ACTOne) offers measurement of cAMP-dependent calcium influx or membrane depolarization with conventional fluorescent methods both in kinetic and in endpoint modes, optimal for high-throughput and subsequent compound screening. The utility of the technique is reported here based on assay development and high-throughput screening for small-molecule antagonists of the peptide parathyroid hormone 2 receptor (PTH2R). The dual-signaling properties of the receptor were retained in the recombinant system, and the observed pharmacological profile corresponded to data from radiolabeled cAMP determination. The membrane-potential-based high-throughput assay produced reproducible actives and led to the identification of several chemical scaffolds with potential utility as PTH2R ligands.


Subject(s)
Drug Evaluation, Preclinical/methods , GTP-Binding Protein alpha Subunits, Gs/metabolism , Receptors, G-Protein-Coupled/antagonists & inhibitors , Calcium/pharmacology , Cell Line , Cyclic AMP/metabolism , Cyclic Nucleotide-Gated Cation Channels/metabolism , Dose-Response Relationship, Drug , Fluorescence , Humans , Membrane Potentials/drug effects , Neuropeptides/pharmacology , Receptor, Parathyroid Hormone, Type 1/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/drug effects
13.
J Phys Chem A ; 103(25): 4885-4892, 1999 Jun 24.
Article in English | MEDLINE | ID: mdl-31995859

ABSTRACT

The Ce4+-malonic/bromomalonic acid reactions play an important role in the oscillatory Belousov-Zhabotinsky reaction. In this work CO2 evolution from these reactions was studied with a sensitive and quantitative method, by converting the CO2 to methane and measuring it with a flame ionization detector. It was found that the stoichiometries depend on the initial conditions in batch experiments or on the mixing rate of reagents in a semibatch reactor. These findings are explained by two main reaction channels: one for recombination and another for decarboxylation. Decarboxylation itself has two separate routes, one is dominant at low while the other at high Ce4+ concentrations. In the latter, formation of more than two CO2 molecules from one malonic/bromomalonic acid molecule was observed. Novel reaction schemes containing carbenes are proposed for these "high Ce4+" decarboxylation channels. To check the new mechanism, HPLC measurements are planned as a continuation of the research.

SELECTION OF CITATIONS
SEARCH DETAIL
...