Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 4111, 2024 02 19.
Article in English | MEDLINE | ID: mdl-38374384

ABSTRACT

Respiratory viral infections, a major public health concern, necessitate continuous development of novel antiviral strategies, particularly in the face of emerging and re-emerging pathogens. In this study, we explored the potential of human milk oligosaccharides (HMOs) as broad-spectrum antiviral agents against key respiratory viruses. By examining the structural mimicry of host cell receptors and their known biological functions, including antiviral activities, we assessed the ability of HMOs to bind and potentially inhibit viral proteins crucial for host cell entry. Our in silico analysis focused on viral proteins integral to host-virus interactions, namely the hemagglutinin protein of influenza, fusion proteins of respiratory syncytial and human metapneumovirus, and the spike protein of SARS-CoV-2. Using molecular docking and simulation studies, we demonstrated that HMOs exhibit varying binding affinities to these viral proteins, suggesting their potential as viral entry inhibitors. This study identified several HMOs with promising binding profiles, highlighting their potential in antiviral drug development. This research provides a foundation for utilizing HMOs as a natural source for designing new therapeutics, offering a novel approach in the fight against respiratory viral infections.


Subject(s)
Antiviral Agents , Influenza, Human , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Viral Proteins , Molecular Docking Simulation , Milk, Human , SARS-CoV-2 , Oligosaccharides
2.
J Cell Biochem ; 124(7): 989-1001, 2023 07.
Article in English | MEDLINE | ID: mdl-37210732

ABSTRACT

Mutations in the αIIb ß-propeller domain have long been known to disrupt heterodimerization and intracellular trafficking of αIIbß3 complexes leading to diminished surface expression and/or function, resulting in Glanzmann thrombasthenia. Our previous study on three ß-propeller mutations, namely G128S, S287L, and G357S, showed variable defects in protein transport correlated with the patient's clinical phenotypes. Pulse-chase experiments revealed differences in αIIbß3 complex maturation among the three mutations. Hence, the current study aims to correlate conformational changes caused by each one of them. Evolutionary conservation analysis, stability analysis, and molecular dynamics simulations of the three mutant structures were carried out. Stability analysis revealed that, while G128S and G357S mutations destabilized the ß-propeller structure, S287L retained the stability. Wild-type and mutant ß-propeller structures, when subjected to molecular dynamics simulations, confirmed that G128S and G357S were both destabilizing in nature when compared with the wild-type and S287L based on several parameters studied, like RMSD, RMSF, Rg, FEL, PCA, secondary structure, and hydrogen bonds. In our previous study, we demonstrated that mutant S287L αIIbß3 complexes were more stable than the wild-type αIIbß3 complexes, as evidenced in pulse-chase experiments. These findings corroborate variable intracellular fates of mutant αIIbß3 complexes as a result of these ß-propeller mutations.


Subject(s)
Integrin alpha2 , Integrin beta3 , Platelet Glycoprotein GPIIb-IIIa Complex , Thrombasthenia , Humans , Integrin beta3/genetics , Molecular Dynamics Simulation , Mutation , Platelet Glycoprotein GPIIb-IIIa Complex/genetics , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Protein Structure, Secondary , Thrombasthenia/genetics , Thrombasthenia/metabolism , Integrin alpha2/genetics , Integrin alpha2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...