Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Methods ; 13(41): 4911-4919, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34608473

ABSTRACT

Background: Indomenthyl is an innovative anti-inflammatory drug with a high analgesic activity. Indomenthyl releases indomethacin under the influence of neutrophil esterases in the inflammation focus. Methodology/results: This research is aimed at developing a highly sensitive method for the quantitative determination of indomenthyl and its active metabolite indomethacin in rabbit plasma by HPLC-MS/MS. Protein precipitation and extraction with acetonitrile were used for analyte isolation from plasma according to the QuEChERS principle. The target quantitative ion pairs m/z were respectively 496.4 → 358.0 for indomenthyl, 358.0 → 139.5 for indomethacin, and 340.1 → 202.1 for the IS. Conclusion: The calibration curve was linear over the range 0.1-1000 ng mL-1. The technique was applied to the pharmacokinetic study at a dose of 25 mg kg-1 to rabbits.


Subject(s)
Anti-Inflammatory Agents/analysis , Pharmaceutical Preparations , Tandem Mass Spectrometry , Animals , Anti-Inflammatory Agents/pharmacology , Chromatography, High Pressure Liquid/methods , Rabbits , Reproducibility of Results , Tandem Mass Spectrometry/methods
2.
Molecules ; 26(8)2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33921479

ABSTRACT

Synthetic and natural ionophores have been developed to catalyze ion transport and have been shown to exhibit a variety of biological effects. We synthesized 24 aza- and diaza-crown ethers containing adamantyl, adamantylalkyl, aminomethylbenzoyl, and ε-aminocaproyl substituents and analyzed their biological effects in vitro. Ten of the compounds (8, 10-17, and 21) increased intracellular calcium ([Ca2+]i) in human neutrophils, with the most potent being compound 15 (N,N'-bis[2-(1-adamantyl)acetyl]-4,10-diaza-15-crown-5), suggesting that these compounds could alter normal neutrophil [Ca2+]i flux. Indeed, a number of these compounds (i.e., 8, 10-17, and 21) inhibited [Ca2+]i flux in human neutrophils activated by N-formyl peptide (fMLF). Some of these compounds also inhibited chemotactic peptide-induced [Ca2+]i flux in HL60 cells transfected with N-formyl peptide receptor 1 or 2 (FPR1 or FPR2). In addition, several of the active compounds inhibited neutrophil reactive oxygen species production induced by phorbol 12-myristate 13-acetate (PMA) and neutrophil chemotaxis toward fMLF, as both of these processes are highly dependent on regulated [Ca2+]i flux. Quantum chemical calculations were performed on five structure-related diaza-crown ethers and their complexes with Ca2+, Na+, and K+ to obtain a set of molecular electronic properties and to correlate these properties with biological activity. According to density-functional theory (DFT) modeling, Ca2+ ions were more effectively bound by these compounds versus Na+ and K+. The DFT-optimized structures of the ligand-Ca2+ complexes and quantitative structure-activity relationship (QSAR) analysis showed that the carbonyl oxygen atoms of the N,N'-diacylated diaza-crown ethers participated in cation binding and could play an important role in Ca2+ transfer. Thus, our modeling experiments provide a molecular basis to explain at least part of the ionophore mechanism of biological action of aza-crown ethers.


Subject(s)
Aza Compounds/chemical synthesis , Aza Compounds/pharmacology , Crown Ethers/chemical synthesis , Crown Ethers/pharmacology , Models, Molecular , Calcium/metabolism , Chemotaxis/drug effects , Density Functional Theory , HL-60 Cells , Humans , Ligands , Neutrophils/drug effects , Reactive Oxygen Species/metabolism , Receptors, Formyl Peptide/metabolism , Regression Analysis , Static Electricity , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...