Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters










Publication year range
1.
Curr Res Struct Biol ; 7: 100147, 2024.
Article in English | MEDLINE | ID: mdl-38766653

ABSTRACT

The function of a protein is most of the time achieved due to minute conformational changes in its structure due to ligand binding or environmental changes or other interactions. Hence the analysis of structure of proteins should go beyond the analysis of mere atom contacts and should include the emergent global structure as a whole. This can be achieved by graph spectra based analysis of protein structure networks. GraSp-PSN is a web server that can assist in (1) acquiring weighted protein structure network (PSN) and network parameters ranging from atomic level to global connectivity from the three dimensional coordinates of a protein, (2) generating scores for comparison of a pair of protein structures with detailed information of local to global connectivity, and (3) assigning perturbation scores to the residues and their interactions, that can prioritise them in terms of residue clusters. The methods implemented in the server are generic in nature and can be used for comparing networks in any discipline by uploading adjacency matrices in the server. The webserver can be accessed using the following link: https://pople.mbu.iisc.ac.in/.

2.
Proteins ; 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38058245

ABSTRACT

Protein sequence determines its structure and function. The indirect relationship between protein function and structure lies deep-rooted in the structural topology that has evolved into performing optimal function. The evolution of structure and its interconnectivity has been conventionally studied by comparing the root means square deviation between protein structures at the backbone level. Two factors that are necessary for the quantitative comparison of non-covalent interactions are (a) explicit inclusion of the coordinates of side-chain atoms and (b) consideration of multiple structures from the conformational landscape to account for structural variability. We have recently addressed these fundamental issues by investigating the alteration of inter-residue interactions across an ensemble of protein structure networks through a graph spectral approach. In this study, we have developed a rigorous method to compare the structure networks of homologous proteins, with a wide range of sequence identity percentages. A range of dissimilarity measures that show the extent of change in the network across homologous structures are generated, which also includes the comparison of the protein structure variability. We discuss in detail, scenarios where the variation of structure is not accompanied by loss or gain of the overall network and its vice versa. The sequence-based phylogeny among the homologs is also compared with the lineage obtained from information from such a robust structure comparison. In summary, we can obtain a quantitative comparison score for the structure networks of homologous proteins, which also enables us to study the evolution of protein function based on the variation of their topologies.

3.
ACS Omega ; 7(38): 34034-34044, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36188260

ABSTRACT

During multidrug combination chemotherapy, activation of the nuclear receptor and the transcription factor human pregnane xenobiotic receptor (hPXR) has been shown to play a role in the development of chemoresistance. Mechanistically, this could occur due to the cancer drug activation of hPXR and the subsequent upregulation of hPXR target genes such as the drug metabolism enzyme, cytochrome P450 3A4 (CYP3A4). In the context of hPXR-mediated drug resistance, hPXR antagonists would be useful adjuncts to PXR-activating chemotherapy. However, there are currently no clinically approved hPXR antagonists in the market. Gefitinib (GEF), a tyrosine kinase inhibitor used for the treatment of advanced non-small-cell lung cancer and effectively used in combinational chemotherapy treatments, is a promising candidate owing to its hPXR ligand-like features. We, therefore, investigated whether GEF would act as an hPXR antagonist when combined with a known hPXR agonist, rifampicin (RIF). At therapeutically relevant concentrations, GEF successfully inhibited the RIF-induced upregulation of endogenous CYP3A4 gene expression in human primary hepatocytes and human hepatocells. Additionally, GEF inhibited the RIF induction of hPXR-mediated CYP3A4 promoter activity in HepG2 human liver carcinoma cells. The computational modeling of molecular docking predicted that GEF could bind to multiple sites on hPXR including the ligand-binding pocket, allowing for potential as a direct antagonist as well as an allosteric inhibitor. Indeed, GEF bound to the ligand-binding domain of the hPXR in cell-free assays, suggesting that GEF directly interacts with the hPXR. Taken together, our results suggest that GEF, at its clinically relevant therapeutic concentration, can antagonize the hPXR agonist-induced CYP3A4 gene expression in human hepatocytes. Thus, GEF could be a potential candidate for use in combinational chemotherapies to combat hPXR agonist-induced chemoresistance. Further studies are warranted to determine whether GEF has sufficient hPXR inhibitor abilities to overcome the hPXR agonist-induced chemoresistance.

4.
Curr Res Struct Biol ; 4: 134-145, 2022.
Article in English | MEDLINE | ID: mdl-35586857

ABSTRACT

Proteins perform their function by accessing a suitable conformer from the ensemble of available conformations. The conformational diversity of a chosen protein structure can be obtained by experimental methods under different conditions. A key issue is the accurate comparison of different conformations. A gold standard used for such a comparison is the root mean square deviation (RMSD) between the two structures. While extensive refinements of RMSD evaluation at the backbone level are available, a comprehensive framework including the side chain interaction is not well understood. Here we employ protein structure network (PSN) formalism, with the non-covalent interactions of side chain, explicitly treated. The PSNs thus constructed are compared through graph spectral method, which provides a comparison at the local and at the global structural level. In this work, PSNs of multiple crystal conformers of single-chain, single-domain proteins, are subject to pair-wise analysis to examine the dissimilarity in their network topologies and in order to determine the conformational diversity of their native structures. This information is utilized to classify the structural domains of proteins into different categories. It is observed that proteins typically tend to retain structure and interactions at the backbone level. However, some of them also depict variability in either their overall structure or only in their inter-residue connectivity at the sidechain level, or both. Variability of sub-networks based on solvent accessibility and secondary structure is studied. The types of specific interactions are found to contribute differently to structure variability. An ensemble analysis by computing the mathematical variance of edge-weights across multiple conformers provided information on the contribution to overall variability from each edge of the PSN. Interactions that are highly variable are identified and their impact on structure variability has been discussed with the help of a case study. The classification based on the present side-chain network-based studies provides a framework to correlate the structure-function relationships in protein structures.

5.
Methods Mol Biol ; 2253: 89-112, 2021.
Article in English | MEDLINE | ID: mdl-33315220

ABSTRACT

The process of allostery is often guided by subtle changes in the non-covalent interactions between residues of a protein. These changes may be brought about by minor perturbations by natural processes like binding of a ligand or protein-protein interaction. The challenge lies in capturing minute changes at the residue interaction level and following their propagation at local as well as global distances. While macromolecular effects of the phenomenon of allostery are inferred from experiments, a computational microscope can elucidate atomistic-level details leading to such macromolecular effects. Network formalism has served as an attractive means to follow this path and has been pursued further for the past couple of decades. In this chapter some concepts and methods are summarized, and recent advances are discussed. Specifically, the changes in strength of interactions (edge weight) and their repercussion on the overall protein organization (residue clustering) are highlighted. In this review, we adopt a graph spectral method to probe these subtle changes in a quantitative manner. Further, the power of this method is demonstrated for capturing re-ordering of side-chain interactions in response to ligand binding, which culminates into formation of a protein-protein complex in ß2-adrenergic receptors.


Subject(s)
Protein Interaction Mapping/methods , Receptors, Adrenergic, beta/chemistry , Receptors, Adrenergic, beta/metabolism , Algorithms , Allosteric Regulation , Animals , Humans , Models, Molecular , Protein Binding , Protein Interaction Maps
6.
EMBO Mol Med ; 12(4): e11621, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32153125

ABSTRACT

The human PXR (pregnane X receptor), a master regulator of drug metabolism, has essential roles in intestinal homeostasis and abrogating inflammation. Existing PXR ligands have substantial off-target toxicity. Based on prior work that established microbial (indole) metabolites as PXR ligands, we proposed microbial metabolite mimicry as a novel strategy for drug discovery that allows exploiting previously unexplored parts of chemical space. Here, we report functionalized indole derivatives as first-in-class non-cytotoxic PXR agonists as a proof of concept for microbial metabolite mimicry. The lead compound, FKK6 (Felix Kopp Kortagere 6), binds directly to PXR protein in solution, induces PXR-specific target gene expression in cells, human organoids, and mice. FKK6 significantly represses pro-inflammatory cytokine production cells and abrogates inflammation in mice expressing the human PXR gene. The development of FKK6 demonstrates for the first time that microbial metabolite mimicry is a viable strategy for drug discovery and opens the door to underexploited regions of chemical space.


Subject(s)
Molecular Mimicry , Pregnane X Receptor/chemistry , Animals , Cells, Cultured , Cytokines , Humans , Inflammation , Intestines , Ligands , Mice , Organoids
7.
Front Mol Biosci ; 7: 596945, 2020.
Article in English | MEDLINE | ID: mdl-33392257

ABSTRACT

Network theory-based approaches provide valuable insights into the variations in global structural connectivity between different dynamical states of proteins. Our objective is to review network-based analyses to elucidate such variations, especially in the context of subtle conformational changes. We present technical details of the construction and analyses of protein structure networks, encompassing both the non-covalent connectivity and dynamics. We examine the selection of optimal criteria for connectivity based on the physical concept of percolation. We highlight the advantages of using side-chain-based network metrics in contrast to backbone measurements. As an illustrative example, we apply the described network approach to investigate the global conformational changes between the closed and partially open states of the SARS-CoV-2 spike protein. These conformational changes in the spike protein is crucial for coronavirus entry and fusion into human cells. Our analysis reveals global structural reorientations between the two states of the spike protein despite small changes between the two states at the backbone level. We also observe some differences at strategic locations in the structures, correlating with their functions, asserting the advantages of the side-chain network analysis. Finally, we present a view of allostery as a subtle synergistic-global change between the ligand and the receptor, the incorporation of which would enhance drug design strategies.

8.
J Chem Inf Model ; 59(5): 1715-1727, 2019 05 28.
Article in English | MEDLINE | ID: mdl-30912941

ABSTRACT

In this perspective article, we present a multidisciplinary approach for characterizing protein structure networks. We first place our approach in its historical context and describe the manner in which it synthesizes concepts from quantum chemistry, biology of polymer conformations, matrix mathematics, and percolation theory. We then explicitly provide the method for constructing the protein structure network in terms of noncovalently interacting amino acid side chains and show how a mine of information can be obtained from the graph spectra of these networks. Employing suitable mathematical approaches, such as the use of a weighted, Laplacian matrix to generate the spectra, enables us to develop rigorous methods for network comparison and to identify crucial nodes responsible for the network integrity through a perturbation approach. Our scoring methods have several applications in structural biology that are elusive to conventional methods of analyses. Here, we discuss the instances of (a) protein structure comparison that includes the details of side chain connectivity, (b) contribution to node clustering as a function of bound ligand, explaining the global effect of local changes in phenomena such as allostery, and (c) identification of crucial amino acids for structural integrity, derived purely from the spectra of the graph. We demonstrate how our method enables us to obtain valuable information on key proteins involved in cellular functions and diseases such as GPCR and HIV protease and discuss the biological implications. We then briefly describe how concepts from percolation theory further augment our analyses. In our concluding perspective for future developments, we suggest a further unifying approach to protein structure analyses and a judicious choice of questions to employ our methods for larger, more complex networks, such as metabolic and disease networks.


Subject(s)
Proteins/chemistry , Quantum Theory , Allosteric Regulation , Animals , Computer Graphics , Humans , Models, Molecular , Protein Conformation , Protein Interaction Domains and Motifs , Protein Interaction Maps , Proteins/metabolism , Receptors, Adrenergic, beta-2/chemistry , Receptors, Adrenergic, beta-2/metabolism , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Signal Transduction
9.
Mol Pharmacol ; 95(3): 324-334, 2019 03.
Article in English | MEDLINE | ID: mdl-30622215

ABSTRACT

Activation of human pregnane X receptor (hPXR) has been associated with induction of chemoresistance. It has been proposed that such chemoresistance via cytochrome P450/drug transporters can be reversed with the use of antagonists that specifically abrogate agonist-mediated hPXR activation. Unfortunately, proposed antagonists lack the specificity and appropriate pharmacological characteristics that allow these features to be active in the clinic. We propose that, ideally, an hPXR antagonist would be a cancer drug itself that is part of a "cancer drug cocktail" and effective as an hPXR antagonist at therapeutic concentrations. Belinostat (BEL), a histone deacetylase inhibitor approved for the treatment of relapsed/refractory peripheral T-cell lymphoma, and often used in combination with chemotherapy, is an attractive candidate based on its hPXR ligand-like features. We sought to determine whether these features of BEL might allow it to behave as an antagonist in combination chemotherapy regimens that include hPXR activators. BEL represses agonist-activated hPXR target gene expression at its therapeutic concentrations in human primary hepatocytes and LS174T human colon cancer cells. BEL repressed rifampicin-induced gene expression of CYP3A4 and multidrug resistance protein 1, as well as their respective protein activities. BEL decreased rifampicin-induced resistance to SN-38, the active metabolite of irinotecan, in LS174T cells. This finding indicates that BEL could suppress hPXR agonist-induced chemoresistance. BEL attenuated the agonist-induced steroid receptor coactivator-1 interaction with hPXR, and, together with molecular docking studies, the study suggests that BEL directly interacts with multiple sites on hPXR. Taken together, our results suggest that BEL, at its clinically relevant therapeutic concentration, can antagonize hPXR agonist-induced gene expression and chemoresistance.


Subject(s)
Cytochrome P-450 CYP3A/metabolism , Hydroxamic Acids/pharmacology , Rifampin/pharmacology , Sulfonamides/pharmacology , ATP Binding Cassette Transporter, Subfamily B/metabolism , Adult , Cell Line, Tumor , Female , Gene Expression/drug effects , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Irinotecan/pharmacology , Male , Middle Aged , Molecular Docking Simulation/methods , Pregnane X Receptor/metabolism , Receptors, Steroid/metabolism , Young Adult
10.
Proteins ; 85(9): 1759-1776, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28598579

ABSTRACT

Accurate structural validation of proteins is of extreme importance in studies like protein structure prediction, analysis of molecular dynamic simulation trajectories and finding subtle changes in very similar structures. The benchmarks for today's structure validation are scoring methods like global distance test-total structure (GDT-TS), TM-score and root mean square deviations (RMSD). However, there is a lack of methods that look at both the protein backbone and side-chain structures at the global connectivity level and provide information about the differences in connectivity. To address this gap, a graph spectral based method (NSS-network similarity score) which has been recently developed to rigorously compare networks in diverse fields, is adopted to compare protein structures both at the backbone and at the side-chain noncovalent connectivity levels. In this study, we validate the performance of NSS by investigating protein structures from X-ray structures, modeling (including CASP models), and molecular dynamics simulations. Further, we systematically identify the local and the global regions of the structures contributing to the difference in NSS, through the components of the score, a feature unique to this spectral based scoring scheme. It is demonstrated that the method can quantify subtle differences in connectivity compared to a reference protein structure and can form a robust basis for protein structure comparison. Additionally, we have also introduced a network-based method to analyze fluctuations in side chain interactions (edge-weights) in an ensemble of structures, which can be an useful tool for the analysis of MD trajectories.


Subject(s)
Models, Molecular , Protein Conformation , Proteins/chemistry , Computer Simulation , Crystallography, X-Ray
11.
Protein Sci ; 25(11): 1989-2005, 2016 11.
Article in English | MEDLINE | ID: mdl-27515410

ABSTRACT

Ligand-regulated pregnane X receptor (PXR), a member of the nuclear receptor superfamily, plays a central role in xenobiotic metabolism. Despite its critical role in drug metabolism, PXR activation can lead to adverse drug-drug interactions and early stage metabolism of drugs. Activated PXR can induce cancer drug resistance and enhance the onset of malignancy. Since promiscuity in ligand binding makes it difficult to develop competitive inhibitors targeting PXR ligand binding pocket (LBP), it is essential to identify allosteric sites for effective PXR antagonism. Here, molecular dynamics (MD) simulation studies unravelled the existence of two different conformational states, namely "expanded" and "contracted", in apo PXR ligand binding domain (LBD). Ligand binding events shifted this conformational equilibrium and locked the LBD in a single "ligand-adaptable" conformational state. Ensemble-based computational solvent mapping identified a transiently open potential small molecule binding pocket between α5 and α8 helices, named "α8 pocket", whose opening-closing mechanism directly correlated with the conformational shift in LBD. A virtual hit identified through structure-based virtual screening against α8 pocket locks the pocket in its open conformation. MD simulations further revealed that the presence of small molecule at allosteric site disrupts the LBD dynamics and locks the LBD in a "tightly-contracted" conformation. The molecular details provided here could guide new structural studies to understand PXR activation and antagonism.


Subject(s)
Molecular Dynamics Simulation , Receptors, Steroid/chemistry , Binding Sites , Humans , Pregnane X Receptor , Protein Structure, Secondary
12.
Curr Protein Pept Sci ; 17(1): 4-25, 2016.
Article in English | MEDLINE | ID: mdl-26412788

ABSTRACT

Network theory has become an excellent method of choice through which biological data are smoothly integrated to gain insights into complex biological problems. Understanding protein structure, folding, and function has been an important problem, which is being extensively investigated by the network approach. Since the sequence uniquely determines the structure, this review focuses on the networks of non-covalently connected amino acid side chains in proteins. Questions in structural biology are addressed within the framework of such a formalism. While general applications are mentioned in this review, challenging problems which have demanded the attention of scientific community for a long time, such as allostery and protein folding, are considered in greater detail. Our aim has been to explore these important problems through the eyes of networks. Various methods of constructing protein structure networks (PSN) are consolidated. They include the methods based on geometry, edges weighted by different schemes, and also bipartite network of protein-nucleic acid complexes. A number of network metrics that elegantly capture the general features as well as specific features related to phenomena, such as allostery and protein model validation, are described. Additionally, an integration of network theory with ensembles of equilibrium structures of a single protein or that of a large number of structures from the data bank has been presented to perceive complex phenomena from network perspective. Finally, we discuss briefly the capabilities, limitations, and the scope for further explorations of protein structure networks.


Subject(s)
Proteins/chemistry , Proteins/metabolism , Allosteric Regulation , DNA/chemistry , DNA/metabolism , Models, Molecular , Models, Theoretical , Protein Binding , Protein Conformation , Protein Folding , Protein Interaction Maps , Protein Stability , RNA/chemistry , RNA/metabolism , Structure-Activity Relationship
13.
PLoS Comput Biol ; 11(12): e1004500, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26699663

ABSTRACT

Metalloproteins form a major class of enzymes in the living system that are involved in crucial biological functions such as catalysis, redox reactions and as 'switches' in signal transductions. Iron dependent repressor (IdeR) is a metal-sensing transcription factor that regulates free iron concentration in Mycobacterium tuberculosis. IdeR is also known to promote bacterial virulence, making it an important target in the field of therapeutics. Mechanistic details of how iron ions modulate IdeR such that it dimerizes and binds to DNA is not understood clearly. In this study, we have performed molecular dynamic simulations and integrated it with protein structure networks to study the influence of iron on IdeR structure and function. A significant structural variation between the metallated and the non-metallated system is observed. Our simulations clearly indicate the importance of iron in stabilizing its monomeric subunit, which in turn promotes dimerization. However, the most striking results are obtained from the simulations of IdeR-DNA complex in the absence of metals, where at the end of 100ns simulations, the protein subunits are seen to rapidly dissociate away from the DNA, thereby forming an excellent resource to investigate the mechanism of DNA binding. We have also investigated the role of iron as an allosteric regulator of IdeR that positively induces IdeR-DNA complex formation. Based on this study, a mechanistic model of IdeR activation and DNA binding has been proposed.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/ultrastructure , DNA/chemistry , DNA/ultrastructure , Models, Chemical , Molecular Dynamics Simulation , Repressor Proteins/chemistry , Repressor Proteins/ultrastructure , Binding Sites , Enzyme Activation , Kinetics , Nucleic Acid Conformation , Protein Binding , Protein Conformation , Substrate Specificity
14.
J Biol Chem ; 289(16): 11042-11058, 2014 Apr 18.
Article in English | MEDLINE | ID: mdl-24573673

ABSTRACT

Dps (DNA-binding protein from starved cells) are dodecameric assemblies belonging to the ferritin family that can bind DNA, carry out ferroxidation, and store iron in their shells. The ferritin-like trimeric pore harbors the channel for the entry and exit of iron. By representing the structure of Dps as a network we have identified a charge-driven interface formed by a histidine aspartate cluster at the pore interface unique to Mycobacterium smegmatis Dps protein, MsDps2. Site-directed mutagenesis was employed to generate mutants to disrupt the charged interactions. Kinetics of iron uptake/release of the wild type and mutants were compared. Crystal structures were solved at a resolution of 1.8-2.2 Å for the various mutants to compare structural alterations vis à vis the wild type protein. The substitutions at the pore interface resulted in alterations in the side chain conformations leading to an overall weakening of the interface network, especially in cases of substitutions that alter the charge at the pore interface. Contrary to earlier findings where conserved aspartate residues were found crucial for iron release, we propose here that in the case of MsDps2, it is the interplay of negative-positive potentials at the pore that enables proper functioning of the protein. In similar studies in ferritins, negative and positive patches near the iron exit pore were found to be important in iron uptake/release kinetics. The unique ionic cluster in MsDps2 makes it a suitable candidate to act as nano-delivery vehicle, as these gated pores can be manipulated to exhibit conformations allowing for slow or fast rates of iron release.


Subject(s)
Bacterial Proteins/chemistry , Ferritins/chemistry , Iron/chemistry , Mycobacterium smegmatis/chemistry , Aspartic Acid/chemistry , Aspartic Acid/genetics , Aspartic Acid/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biological Transport, Active/physiology , Crystallography, X-Ray , Ferritins/genetics , Ferritins/immunology , Histidine/chemistry , Histidine/genetics , Histidine/metabolism , Iron/metabolism , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/metabolism , Protein Structure, Tertiary , Structure-Activity Relationship
15.
F1000Res ; 3: 17, 2014.
Article in English | MEDLINE | ID: mdl-25580218

ABSTRACT

Determining the correct structure of a protein given its sequence still remains an arduous task with many researchers working towards this goal. Most structure prediction methodologies result in the generation of a large number of probable candidates with the final challenge being to select the best amongst these. In this work, we have used Protein Structure Networks of native and modeled proteins in combination with Support Vector Machines to estimate the quality of a protein structure model and finally to provide ranks for these models. Model ranking is performed using regression analysis and helps in model selection from a group of many similar and good quality structures. Our results show that structures with a rank greater than 16 exhibit native protein-like properties while those below 10 are non-native like. The tool is also made available as a web-server ( http://vishgraph.mbu.iisc.ernet.in/GraProStr/native_non_native_ranking.html), where, 5 modelled structures can be evaluated at a given time.

16.
Protein Sci ; 22(10): 1399-416, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23934896

ABSTRACT

Network theory applied to protein structures provides insights into numerous problems of biological relevance. The explosion in structural data available from PDB and simulations establishes a need to introduce a standalone-efficient program that assembles network concepts/parameters under one hood in an automated manner. Herein, we discuss the development/application of an exhaustive, user-friendly, standalone program package named PSN-Ensemble, which can handle structural ensembles generated through molecular dynamics (MD) simulation/NMR studies or from multiple X-ray structures. The novelty in network construction lies in the explicit consideration of side-chain interactions among amino acids. The program evaluates network parameters dealing with topological organization and long-range allosteric communication. The introduction of a flexible weighing scheme in terms of residue pairwise cross-correlation/interaction energy in PSN-Ensemble brings in dynamical/chemical knowledge into the network representation. Also, the results are mapped on a graphical display of the structure, allowing an easy access of network analysis to a general biological community. The potential of PSN-Ensemble toward examining structural ensemble is exemplified using MD trajectories of an ubiquitin-conjugating enzyme (UbcH5b). Furthermore, insights derived from network parameters evaluated using PSN-Ensemble for single-static structures of active/inactive states of ß2-adrenergic receptor and the ternary tRNA complexes of tyrosyl tRNA synthetases (from organisms across kingdoms) are discussed. PSN-Ensemble is freely available from http://vishgraph.mbu.iisc.ernet.in/PSN-Ensemble/psn_index.html.


Subject(s)
Molecular Dynamics Simulation , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Proteins/chemistry , Bacterial Proteins/chemistry , Computational Biology/methods , Crystallography, X-Ray , Methanocaldococcus/enzymology , Models, Molecular , RNA, Transfer/chemistry , Receptors, Adrenergic, beta-2/chemistry , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae Proteins/chemistry , Software , Tyrosine-tRNA Ligase/chemistry
17.
Nucleic Acids Res ; 41(9): 4963-75, 2013 May.
Article in English | MEDLINE | ID: mdl-23530111

ABSTRACT

The accuracy of pairing of the anticodon of the initiator tRNA (tRNA(fMet)) and the initiation codon of an mRNA, in the ribosomal P-site, is crucial for determining the translational reading frame. However, a direct role of any ribosomal element(s) in scrutinizing this pairing is unknown. The P-site elements, m(2)G966 (methylated by RsmD), m(5)C967 (methylated by RsmB) and the C-terminal tail of the protein S9 lie in the vicinity of tRNA(fMet). We investigated the role of these elements in initiation from various codons, namely, AUG, GUG, UUG, CUG, AUA, AUU, AUC and ACG with tRNA(fMet(CAU) (tRNA(fMet) with CAU anticodon); CAC and CAU with tRNA(fMet(GUG); UAG with tRNA(fMet(CAU) ; UAC with tRNA(fMet(GUG) ; and AUC with tRNA(fMet(GUG) using in vivo and computational methods. Although RsmB deficiency did not impact initiation from most codons, RsmD deficiency increased initiation from AUA, CAC and CAU (2- to 3.6-fold). Deletion of the S9 C-terminal tail resulted in poorer initiation from UUG, GUG and CUG, but in increased initiation from CAC, CAU and UAC codons (up to 4-fold). Also, the S9 tail suppressed initiation with tRNA(fMet(CAU) lacking the 3GC base pairs in the anticodon stem. These observations suggest distinctive roles of 966/967 methylations and the S9 tail in initiation.


Subject(s)
Escherichia coli Proteins/chemistry , Escherichia coli/genetics , Peptide Chain Initiation, Translational , RNA, Ribosomal, 16S/chemistry , RNA, Transfer, Met/chemistry , Ribosomal Proteins/chemistry , Ribosomes/chemistry , Anticodon , Codon , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Methylation , Molecular Dynamics Simulation , Mutation , RNA, Messenger/chemistry , RNA, Ribosomal, 16S/metabolism , RNA, Transfer, Met/genetics , RNA, Transfer, Met/metabolism , Ribosomal Protein S9 , Ribosomal Proteins/genetics , Sequence Deletion
19.
PLoS Comput Biol ; 8(5): e1002505, 2012.
Article in English | MEDLINE | ID: mdl-22615547

ABSTRACT

There are many well-known examples of proteins with low sequence similarity, adopting the same structural fold. This aspect of sequence-structure relationship has been extensively studied both experimentally and theoretically, however with limited success. Most of the studies consider remote homology or "sequence conservation" as the basis for their understanding. Recently "interaction energy" based network formalism (Protein Energy Networks (PENs)) was developed to understand the determinants of protein structures. In this paper we have used these PENs to investigate the common non-covalent interactions and their collective features which stabilize the TIM barrel fold. We have also developed a method of aligning PENs in order to understand the spatial conservation of interactions in the fold. We have identified key common interactions responsible for the conservation of the TIM fold, despite high sequence dissimilarity. For instance, the central beta barrel of the TIM fold is stabilized by long-range high energy electrostatic interactions and low-energy contiguous vdW interactions in certain families. The other interfaces like the helix-sheet or the helix-helix seem to be devoid of any high energy conserved interactions. Conserved interactions in the loop regions around the catalytic site of the TIM fold have also been identified, pointing out their significance in both structural and functional evolution. Based on these investigations, we have developed a novel network based phylogenetic analysis for remote homologues, which can perform better than sequence based phylogeny. Such an analysis is more meaningful from both structural and functional evolutionary perspective. We believe that the information obtained through the "interaction conservation" viewpoint and the subsequently developed method of structure network alignment, can shed new light in the fields of fold organization and de novo computational protein design.


Subject(s)
Models, Chemical , Models, Molecular , Sequence Alignment/methods , Sequence Analysis, Protein/methods , Triose-Phosphate Isomerase/chemistry , Triose-Phosphate Isomerase/ultrastructure , Amino Acid Sequence , Computer Simulation , Energy Transfer , Molecular Sequence Data , Protein Conformation , Protein Folding
20.
J Biomol Struct Dyn ; 29(6): 606-22, 2012.
Article in English | MEDLINE | ID: mdl-22545992

ABSTRACT

Convergence of the vast sequence space of proteins into a highly restricted fold/conformational space suggests a simple yet unique underlying mechanism of protein folding that has been the subject of much debate in the last several decades. One of the major challenges related to the understanding of protein folding or in silico protein structure prediction is the discrimination of non-native structures/decoys from the native structure. Applications of knowledge-based potentials to attain this goal have been extensively reported in the literature. Also, scoring functions based on accessible surface area and amino acid neighbourhood considerations were used in discriminating the decoys from native structures. In this article, we have explored the potential of protein structure network (PSN) parameters to validate the native proteins against a large number of decoy structures generated by diverse methods. We are guided by two principles: (a) the PSNs capture the local properties from a global perspective and (b) inclusion of non-covalent interactions, at all-atom level, including the side-chain atoms, in the network construction accommodates the sequence dependent features. Several network parameters such as the size of the largest cluster, community size, clustering coefficient are evaluated and scored on the basis of the rank of the native structures and the Z-scores. The network analysis of decoy structures highlights the importance of the global properties contributing to the uniqueness of native structures. The analysis also exhibits that the network parameters can be used as metrics to identify the native structures and filter out non-native structures/decoys in a large number of data-sets; thus also has a potential to be used in the protein 'structure prediction' problem.


Subject(s)
Algorithms , Protein Conformation , Proteins/chemistry , Databases, Factual
SELECTION OF CITATIONS
SEARCH DETAIL
...