Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(8): e2311480121, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38354263

ABSTRACT

Cyanobacteria and evolutionarily related chloroplasts of algae and plants possess unique RNA polymerases (RNAPs) with characteristics that distinguish them from canonical bacterial RNAPs. The largest subunit of cyanobacterial RNAP (cyRNAP) is divided into two polypeptides, ß'1 and ß'2, and contains the largest known lineage-specific insertion domain, Si3, located in the middle of the trigger loop and spanning approximately half of the ß'2 subunit. In this study, we present the X-ray crystal structure of Si3 and the cryo-EM structures of the cyRNAP transcription elongation complex plus the NusG factor with and without incoming nucleoside triphosphate (iNTP) bound at the active site. Si3 has a well-ordered and elongated shape that exceeds the length of the main body of cyRNAP, fits into cavities of cyRNAP in the absence of iNTP bound at the active site and shields the binding site of secondary channel-binding proteins such as Gre and DksA. A small transition from the trigger loop to the trigger helix upon iNTP binding results in a large swing motion of Si3; however, this transition does not affect the catalytic activity of cyRNAP due to its minimal contact with cyRNAP, NusG, or DNA. This study provides a structural framework for understanding the evolutionary significance of these features unique to cyRNAP and chloroplast RNAP and may provide insights into the molecular mechanism of transcription in specific environment of photosynthetic organisms and organelle.


Subject(s)
Cyanobacteria , Escherichia coli Proteins , Transcription, Genetic , Escherichia coli/genetics , DNA-Directed RNA Polymerases/metabolism , Cyanobacteria/genetics , Cyanobacteria/metabolism , DNA/metabolism , Peptide Elongation Factors/metabolism , Transcription Factors/metabolism , Escherichia coli Proteins/metabolism
2.
bioRxiv ; 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38260627

ABSTRACT

Cyanobacteria and evolutionarily related chloroplasts of algae and plants possess unique RNA polymerases (RNAPs) with characteristics that distinguish from canonical bacterial RNAPs. The largest subunit of cyanobacterial RNAP (cyRNAP) is divided into two polypeptides, ß'1 and ß'2, and contains the largest known lineage-specific insertion domain, Si3, located in the middle of the trigger loop and spans approximately half of the ß'2 subunit. In this study, we present the X-ray crystal structure of Si3 and the cryo-EM structures of the cyRNAP transcription elongation complex plus the NusG factor with and without incoming nucleoside triphosphate (iNTP) bound at the active site. Si3 has a well-ordered and elongated shape that exceeds the length of the main body of cyRNAP, fits into cavities of cyRNAP and shields the binding site of secondary channel-binding proteins such as Gre and DksA. A small transition from the trigger loop to the trigger helix upon iNTP binding at the active site results in a large swing motion of Si3; however, this transition does not affect the catalytic activity of cyRNAP due to its minimal contact with cyRNAP, NusG or DNA. This study provides a structural framework for understanding the evolutionary significance of these features unique to cyRNAP and chloroplast RNAP and may provide insights into the molecular mechanism of transcription in specific environment of photosynthetic organisms.

3.
Proc Natl Acad Sci U S A ; 120(7): e2218516120, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36745813

ABSTRACT

NusG is a transcription elongation factor that stimulates transcription pausing in Gram+ bacteria including B. subtilis by sequence-specific interaction with a conserved pause-inducing -11TTNTTT-6 motif found in the non-template DNA (ntDNA) strand within the transcription bubble. To reveal the structural basis of NusG-dependent pausing, we determined a cryo-EM structure of a paused transcription complex (PTC) containing RNA polymerase (RNAP), NusG, and the TTNTTT motif in the ntDNA strand. The interaction of NusG with the ntDNA strand rearranges the transcription bubble by positioning three consecutive T residues in a cleft between NusG and the ß-lobe domain of RNAP. We revealed that the RNAP swivel module rotation (swiveling), which widens (swiveled state) and narrows (non-swiveled state) a cleft between NusG and the ß-lobe, is an intrinsic motion of RNAP and is directly linked to trigger loop (TL) folding, an essential conformational change of all cellular RNAPs for the RNA synthesis reaction. We also determined cryo-EM structures of RNAP escaping from the paused transcription state. These structures revealed the NusG-dependent pausing mechanism by which NusG-ntDNA interaction inhibits the transition from swiveled to non-swiveled states, thereby preventing TL folding and RNA synthesis allosterically. This motion is also reduced by the formation of an RNA hairpin within the RNA exit channel. Thus, the pause half-life can be modulated by the strength of the NusG-ntDNA interaction and/or the stability of the RNA hairpin. NusG residues that interact with the TTNTTT motif are widely conserved in bacteria, suggesting that NusG-dependent pausing is widespread.


Subject(s)
Escherichia coli Proteins , Transcription, Genetic , Transcription Factors/genetics , DNA-Directed RNA Polymerases/metabolism , DNA , Bacteria/metabolism , RNA , Escherichia coli Proteins/genetics , Escherichia coli Proteins/chemistry
4.
Nat Commun ; 14(1): 484, 2023 01 30.
Article in English | MEDLINE | ID: mdl-36717560

ABSTRACT

Self-assembly of macromolecules into higher-order symmetric structures is fundamental for the regulation of biological processes. Higher-order symmetric structure self-assembly by the gene expression machinery, such as bacterial DNA-dependent RNA polymerase (RNAP), has never been reported before. Here, we show that the stress-response σB factor from the human pathogen, Mycobacterium tuberculosis, induces the RNAP holoenzyme oligomerization into a supramolecular complex composed of eight RNAP units. Cryo-electron microscopy revealed a pseudo-symmetric structure of the RNAP octamer in which RNAP protomers are captured in an auto-inhibited state and display an open-clamp conformation. The structure shows that σB is sequestered by the RNAP flap and clamp domains. The transcriptional activator RbpA prevented octamer formation by promoting the initiation-competent RNAP conformation. Our results reveal that a non-conserved region of σ is an allosteric controller of transcription initiation and demonstrate how basal transcription factors can regulate gene expression by modulating the RNAP holoenzyme assembly and hibernation.


Subject(s)
DNA-Directed RNA Polymerases , Mycobacterium tuberculosis , Sigma Factor , Humans , Bacterial Proteins/metabolism , Cryoelectron Microscopy , DNA-Directed RNA Polymerases/metabolism , Holoenzymes/metabolism , Mycobacterium tuberculosis/genetics , Sigma Factor/metabolism , Transcription Factors/metabolism , Transcription, Genetic
5.
Nat Microbiol ; 7(11): 1918-1931, 2022 11.
Article in English | MEDLINE | ID: mdl-36192538

ABSTRACT

The transcriptome-wide contributions of Rho-dependent and intrinsic (Rho-independent) transcription termination mechanisms in bacteria are unclear. By sequencing released transcripts in a wild-type strain and strains containing deficiencies in NusA, NusG and/or Rho (10 strains), we produced an atlas of terminators for the model Gram-positive bacterium Bacillus subtilis. We found that NusA and NusG stimulate 77% and 19% of all intrinsic terminators, respectively, and that both proteins participate in Rho-dependent termination. We also show that Rho stimulates termination at 10% of the intrinsic terminators in vivo. We recapitulated Rho-stimulated intrinsic termination at 5 terminators in vitro and found that Rho requires the KOW domain of NusG to stimulate this process at one of these terminators. Computational analyses of our atlas using RNAstructure, MEME suite and DiffLogo, combined with in vitro transcription experiments, revealed that Rho stimulates intrinsic terminators with weak hairpins and/or U-rich tracts by remodelling the RNA upstream of the intrinsic terminator to prevent the formation of RNA structures that could otherwise compete with the terminator hairpin. We also identified 56 putative examples of 'hybrid Rho-dependent termination', wherein classical Rho-dependent termination occurs after readthrough of a Rho-stimulated intrinsic terminator.


Subject(s)
Bacillus subtilis , Transcription, Genetic , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , RNA/metabolism
6.
Commun Biol ; 5(1): 120, 2022 02 09.
Article in English | MEDLINE | ID: mdl-35140348

ABSTRACT

The bacterial Rho factor is a ring-shaped motor triggering genome-wide transcription termination and R-loop dissociation. Rho is essential in many species, including in Mycobacterium tuberculosis where rho gene inactivation leads to rapid death. Yet, the M. tuberculosis Rho [MtbRho] factor displays poor NTPase and helicase activities, and resistance to the natural Rho inhibitor bicyclomycin [BCM] that remain unexplained. To address these issues, we solved the cryo-EM structure of MtbRho at 3.3 Šresolution. The MtbRho hexamer is poised into a pre-catalytic, open-ring state wherein specific contacts stabilize ATP in intersubunit ATPase pockets, thereby explaining the cofactor preference of MtbRho. We reveal a leucine-to-methionine substitution that creates a steric bulk in BCM binding cavities near the positions of ATP γ-phosphates, and confers resistance to BCM at the expense of motor efficiency. Our work contributes to explain the unusual features of MtbRho and provides a framework for future antibiotic development.


Subject(s)
Mycobacterium tuberculosis , Bridged Bicyclo Compounds, Heterocyclic , Cryoelectron Microscopy , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Rho Factor/chemistry , Rho Factor/genetics , Rho Factor/metabolism , Transcription Factors/metabolism
7.
Elife ; 102021 04 09.
Article in English | MEDLINE | ID: mdl-33835023

ABSTRACT

NusA and NusG are transcription factors that stimulate RNA polymerase pausing in Bacillus subtilis. While NusA was known to function as an intrinsic termination factor in B. subtilis, the role of NusG in this process was unknown. To examine the individual and combinatorial roles that NusA and NusG play in intrinsic termination, Term-seq was conducted in wild type, NusA depletion, ΔnusG, and NusA depletion ΔnusG strains. We determined that NusG functions as an intrinsic termination factor that works alone and cooperatively with NusA to facilitate termination at 88% of the 1400 identified intrinsic terminators. Our results indicate that NusG stimulates a sequence-specific pause that assists in the completion of suboptimal terminator hairpins with weak terminal A-U and G-U base pairs at the bottom of the stem. Loss of NusA and NusG leads to global misregulation of gene expression and loss of NusG results in flagella and swimming motility defects.


Subject(s)
Bacillus subtilis/physiology , Bacterial Proteins/genetics , Gene Expression , Transcription Termination, Genetic , Transcriptional Elongation Factors/genetics , Bacillus subtilis/genetics , Bacterial Proteins/metabolism , Base Sequence , Transcriptional Elongation Factors/metabolism
8.
Front Microbiol ; 11: 1798, 2020.
Article in English | MEDLINE | ID: mdl-32849409

ABSTRACT

Transcription initiation is a key checkpoint and highly regulated step of gene expression. The sigma (σ) subunit of RNA polymerase (RNAP) controls all transcription initiation steps, from recognition of the -10/-35 promoter elements, upon formation of the closed promoter complex (RPc), to stabilization of the open promoter complex (RPo) and stimulation of the primary steps in RNA synthesis. The canonical mechanism to regulate σ activity upon transcription initiation relies on activators that recognize specific DNA motifs and recruit RNAP to promoters. This mini-review describes an emerging group of transcriptional regulators that form a complex with σ or/and RNAP prior to promoter binding, remodel the σ subunit conformation, and thus modify RNAP activity. Such strategy is widely used by bacteriophages to appropriate the host RNAP. Recent findings on RNAP-binding protein A (RbpA) from Mycobacterium tuberculosis and Crl from Escherichia coli suggest that activator-driven changes in σ conformation can be a widespread regulatory mechanism in bacteria.

9.
World J Microbiol Biotechnol ; 34(10): 150, 2018 Sep 25.
Article in English | MEDLINE | ID: mdl-30255239

ABSTRACT

This work used an approach of enzyme engineering towards the improved production of baicalin as well as alteration of acceptor and donor substrate preferences in UGT73A16. The 3D model of Withania somnifera family-1 glycosyltransferase (UGT73A16) was constructed based on the known crystal structures of plant UGTs. Structural and functional properties of UGT73A16 were investigated using docking and mutagenesis. The docking studies were performed to understand the key residues involved in substrate recognition. In the molecular model of UGT73A16, substrates binding pockets are located between N- and C-terminal domains. Modeled UGT73A16 was docked with UDP-glucose, UDP-glucuronic acid (UDPGA), kaempferol, isorhamnetin, 3-hydroxy flavones, naringenin, genistein and baicalein. The protein-ligand interactions showed that His 16, Asp 246, Lys 255, Ala 337, Gln 339, Val 340, Asn 358 and Glu 362 amino acid residues may be important for catalytic activity. The kinetic parameters indicated that mutants A337C and Q339A exhibited 2-3 fold and 6-7 fold more catalytic efficiency, respectively than wild type, and shifted the sugar donor specificity from UDP-glucose to UDPGA. The mutant Q379H displayed large loss of activity with UDP-glucose and UDPGA strongly suggested that last amino acid residue of PSPG box is important for glucuronosylation and glucosylation and highly specific to sugar binding sites. The information obtained from docking and mutational studies could be beneficial in future to engineer this biocatalyst for development of better ones.


Subject(s)
Glycosyltransferases/chemistry , Glycosyltransferases/metabolism , Mutagenesis , Withania/enzymology , Amino Acid Sequence , Binding Sites , Flavonoids , Kinetics , Molecular Docking Simulation , Mutagenesis, Site-Directed , Plant Proteins/chemistry , Plant Proteins/metabolism , Protein Conformation , Sequence Alignment , Sequence Analysis , Sequence Homology, Amino Acid
10.
Nucleic Acids Res ; 46(19): 10106-10118, 2018 11 02.
Article in English | MEDLINE | ID: mdl-30102406

ABSTRACT

The transcriptional activator RbpA associates with Mycobacterium tuberculosis RNA polymerase (MtbRNAP) during transcription initiation, and stimulates formation of the MtbRNAP-promoter open complex (RPo). Here, we explored the influence of promoter motifs on RbpA-mediated activation of MtbRNAP containing the stress-response σB subunit. We show that both the 'extended -10' promoter motif (T-17G-16T-15G-14) and RbpA stabilized RPo and allowed promoter opening at suboptimal temperatures. Furthermore, in the presence of the T-17G-16T-15G-14 motif, RbpA was dispensable for RNA synthesis initiation, while exerting a stabilization effect on RPo. On the other hand, RbpA compensated for the lack of sequence-specific interactions of domains 3 and 4 of σB with the extended -10 and the -35 motifs, respectively. Mutations of the positively charged residues K73, K74 and R79 in RbpA basic linker (BL) had little effect on RPo formation, but affected MtbRNAP capacity for de novo transcription initiation. We propose that RbpA stimulates transcription by strengthening the non-specific interaction of the σ subunit with promoter DNA upstream of the -10 element, and by indirectly optimizing MtbRNAP interaction with initiation substrates. Consequently, RbpA renders MtbRNAP promiscuous in promoter selection, thus compensating for the weak conservation of the -35 motif in mycobacteria.


Subject(s)
Bacterial Proteins/genetics , DNA-Directed RNA Polymerases/genetics , Gene Expression Regulation, Bacterial , Mycobacterium tuberculosis/genetics , RNA-Binding Proteins/genetics , Sigma Factor/genetics , Amino Acid Substitution , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Binding Sites , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , DNA-Directed RNA Polymerases/chemistry , DNA-Directed RNA Polymerases/metabolism , Kinetics , Lysine/chemistry , Lysine/metabolism , Models, Molecular , Mutation , Mycobacterium tuberculosis/metabolism , Nucleotide Motifs , Promoter Regions, Genetic , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , RNA, Bacterial/biosynthesis , RNA, Bacterial/chemistry , RNA, Bacterial/genetics , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Sigma Factor/chemistry , Sigma Factor/metabolism , Substrate Specificity , Temperature , Transcriptional Activation
11.
Sci Adv ; 4(5): eaao5498, 2018 05.
Article in English | MEDLINE | ID: mdl-29806016

ABSTRACT

The σ subunit of bacterial RNA polymerase (RNAP) controls recognition of the -10 and -35 promoter elements during transcription initiation. Free σ adopts a "closed," or inactive, conformation incompatible with promoter binding. The conventional two-state model of σ activation proposes that binding to core RNAP induces formation of an "open," active, σ conformation, which is optimal for promoter recognition. Using single-molecule Förster resonance energy transfer, we demonstrate that vegetative-type σ subunits exist in open and closed states even after binding to the RNAP core. As an extreme case, RNAP from Mycobacterium tuberculosis preferentially retains σ in the closed conformation, which is converted to the open conformation only upon binding by the activator protein RbpA and interaction with promoter DNA. These findings reveal that the conformational dynamics of the σ subunit in the RNAP holoenzyme is a target for regulation by transcription factors and plays a critical role in promoter recognition.


Subject(s)
Gene Expression Regulation, Bacterial , Mycobacterium tuberculosis/genetics , Transcriptional Activation , DNA-Directed RNA Polymerases/chemistry , DNA-Directed RNA Polymerases/metabolism , Models, Molecular , Mycobacterium tuberculosis/metabolism , Promoter Regions, Genetic , Protein Binding , Protein Conformation , Protein Subunits/chemistry , Protein Subunits/metabolism , Single Molecule Imaging , Transcription, Genetic
12.
Int J Biol Macromol ; 79: 661-8, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26027607

ABSTRACT

Mevalonate diphosphate decarboxylase (MDD; EC 4.1.1.33) is an important enzyme in the mevalonic acid pathway catalyzing the Mg(2+)-ATP dependant decarboxylation of mevalonate 5-diphosphate (MVAPP) to isopentenyl diphosphate (IPP). Bacopa monniera recombinant MDD (BmMDD) protein was overexpressed in Escherichia coli BL21 (DE3) strain and purified to apparent homogeneity. Km and Vmax for MVAPP were 144 µM and 52 U mg(-1) respectively. The values of turnover (kcat) and kcat/Km for mevalonate 5-diphosphate were determined to be 40s(-1) and 2.77×10(5) M(-1) s(-1) and kcat and kcat/Km values for ATP were found to be 30 s(-1) and 2.20×10(4) M(-1) s(-1), respectively. pH activity profile indicated the involvement of carboxylate ion, lysine and arginine for the activity of enzyme. The apparent activation energy for the BmMDD catalyzed reaction was 12.7 kJ mol(-1). Optimum pH and temperature for the forward reaction was found to be 8.0 and 45 °C. The enzyme was most stable at pH 7 at 20 °C with the deactivation rate constant (Kd(*)) of 1.69×10(-4) and half life (t1/2) of 68 h. The cation studies suggested that BmMDD is a cation dependant enzyme and optimum activity was achieved in the presence of Mg(2+).


Subject(s)
Bacopa/chemistry , Hemiterpenes/chemistry , Magnesium/chemistry , Mevalonic Acid/analogs & derivatives , Organophosphorus Compounds/chemistry , Plant Proteins/chemistry , Bacopa/enzymology , Carboxy-Lyases , Cations, Divalent , Cloning, Molecular , Enzyme Assays , Enzyme Stability , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Hemiterpenes/metabolism , Hydrogen-Ion Concentration , Kinetics , Mevalonic Acid/chemistry , Mevalonic Acid/metabolism , Molecular Weight , Organophosphorus Compounds/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Temperature
13.
Physiol Mol Biol Plants ; 21(2): 261-7, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25964718

ABSTRACT

Bacopa monniera is an important source of metabolites with pharmaceutical value. It has been regarded as a valuable medicinal plant and its entire commercial requirement is met from wild natural population. Recently, metabolic engineering has emerged as an important solution for sustained supply of assured and quality raw material for the production of active principles. Present report describes efficient in vitro multiplication and transformation method for genetic manipulation of this species. MS medium supplemented with 2 mgl(-1) BA and 0.2 mgl(-1) IAA was found optimum for maximum shoot regeneration (98.33 %) from in vitro leaves with 2-3 longitudinal cuts. Agrobacterium tumefaciens-mediated transformation method was used for generating transgenic B. monniera plants. Putative transformants were confirmed by GUS assay and PCR based confirmation of hptII gene. DNA blot analysis showed single copy insertion of transgene cassette. An average of 87.5 % of the regenerated shoots were found PCR positive for hptII gene and GUS activity was detected in leaves of transgenic shoots at a frequency of 82.5 % The efficient multiple shoots regeneration system described herein may help in mass production of B. monniera plant. Also, the high frequency transformation protocol described here can be used for genetic engineering of B. monniera for enhancement of its pharmaceutically important metabolites.

14.
Physiol Mol Biol Plants ; 21(2): 197-205, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25931776

ABSTRACT

Aboitic stress such as drought and salinity are class of major threats, which plants undergo through their lifetime. Lignin deposition is one of the responses to such abiotic stresses. The gene encoding Cinnamoyl CoA Reductase (CCR) is a key gene for lignin biosynthesis, which has been shown to be over-expressed under stress conditions. In the present study, developing seedlings of Leucaena leucocephala (Vernacular name: Subabul, White popinac) were treated with 1 % mannitol and 200 mM NaCl to mimic drought and salinity stress conditions, respectively. Enzyme linked immunosorbant assay (ELISA) based expression pattern of CCR protein was monitored coupled with Phlorogucinol/HCl activity staining of lignin in transverse sections of developing L. leucocephala seedlings under stress. Our result suggests a differential lignification pattern in developing root and stem under stress conditions. Increase in lignification was observed in mannitol treated stems and corresponding CCR protein accumulation was also higher than control and salt stress treated samples. On the contrary CCR protein was lower in NaCl treated stems and corresponding lignin deposition was also low. Developing root tissue showed a high level of CCR content and lignin deposition than stem samples under all conditions tested. Overall result suggested that lignin accumulation was not affected much in case of developing root however developing stems were significantly affected under drought and salinity stress condition.

15.
Int J Biol Macromol ; 72: 776-83, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25281875

ABSTRACT

Mevalonate kinase (MK; ATP: mevalonate 5-phosphotransferase; EC 2.7.1.36) plays a key role in isoprenoid biosynthetic pathway in plants. MK catalyzes the phosphorylation of mevalonate to form mevalonate-5-phosphate. The recombinant BmMK was cloned and over-expressed in E. coli BL21 (DE3), and purified to homogeneity by affinity chromatography followed by gel filtration. Optimum pH and temperature for forward reaction was found to be 7.0 and 30 °C, respectively. The enzyme was most stable at pH 8 at 25 °C with deactivation rate constant (Kd*) 1.398 × 10(-4) and half life (t1/2) 49 h. pH activity profile of BmMK indicates the involvement of carboxylate ion, histidine, lysine, arginine or aspartic acid at the active site of enzyme. Activity of recombinant BmMK was confirmed by phosphorylation of RS-mevalonate in the presence of Mg(2+), having Km and Vmax 331.9 µM and 719.1 pKat µg(-1), respectively. The values of kcat and kcat/Km for RS-mevalonate were determined to be 143.82 s(-1) and 0.43332 M(-1) s(-1) and kcat and kcat/Km values for ATP were found 150.9 s(-1) and 1.023 M(-1) s(-1). The metal ion studies suggested that BmMK is a metal dependent enzyme and highly active in the presence of MgCl2.


Subject(s)
Bacopa/chemistry , Bacopa/enzymology , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Recombinant Proteins , Amino Acid Sequence , Bacopa/genetics , Cloning, Molecular , DNA, Complementary , Enzyme Activation , Gene Expression , Hydrogen-Ion Concentration , Ions/chemistry , Kinetics , Metals/chemistry , Molecular Sequence Data , Molecular Weight , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/isolation & purification , Phylogeny , Sequence Alignment , Sequence Analysis, DNA , Temperature
16.
Mol Biol Rep ; 41(7): 4675-88, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24664316

ABSTRACT

Health related benefits of isoflavones such as genistein are well known. Glycosylation of genistein yields different glycosides like genistein 7-O-glycoside (genistin) and genistein 4'-O-glycoside (sophoricoside). This is the first report on isolation, cloning and functional characterization of a glycosyltransferase specific for genistein 4'-O-glucoside from Bacopa monniera, an important Indian medicinal herb. The glycosyltransferase from B. monniera (UGT74W1) showed 49% identity at amino acid level with the glycosyltransferases from Lycium barbarum. The UGT74W1 sequence contained all the conserved motifs present in plant glycosyltransferases. UGT74W1 was cloned in pET-30b (+) expression vector and transformed into E. coli. The molecular mass of over expressed protein was found to be around 52 kDa. Functional characterization of the enzyme was performed using different substrates. Product analysis was done using LC-MS and HPLC, which confirmed its specificity for genistein 4'-O-glucoside. Immuno-localization studies of the UGT74W1 showed its localization in the vascular bundle. Spatio-temporal expression studies under normal and stressed conditions were also performed. The control B. monniera plant showed maximum expression of UGT74W1 in leaves followed by roots and stem. Salicylic acid treatment causes almost tenfold increase in UGT74W1 expression in roots, while leaves and stem showed decrease in expression. Since salicylic acid is generated at the time of injury or wound caused by pathogens, this increase in UGT74W1 expression under salicylic acid stress might point towards its role in defense mechanism.


Subject(s)
Bacopa/enzymology , Benzopyrans/metabolism , Gene Expression , Glycosyltransferases/chemistry , Plant Proteins/chemistry , Amino Acid Motifs , Bacopa/classification , Bacopa/drug effects , Bacopa/genetics , Base Sequence , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , India , Lycium/chemistry , Lycium/enzymology , Molecular Sequence Data , Phylogeny , Plant Leaves/drug effects , Plant Leaves/enzymology , Plant Leaves/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/drug effects , Plant Roots/enzymology , Plant Roots/genetics , Plant Stems/drug effects , Plant Stems/enzymology , Plant Stems/genetics , Plants, Medicinal , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Salicylic Acid/pharmacology , Sequence Alignment , Substrate Specificity
17.
J Fluoresc ; 24(3): 665-73, 2014 May.
Article in English | MEDLINE | ID: mdl-24322526

ABSTRACT

Fluorescence quenching and time resolved fluorescence studies of wild type recombinant cinnamoyl CoA reductase (Ll-CCRH1), a multitryptophan protein from Leucaena leucocephala and 10 different active site mutants were carried out to investigate tryptophan environment. The enzyme showed highest affinity for feruloyl CoA (K(a) = 3.72 × 10(5) M(-1)) over other CoA esters and cinnamaldehydes, as determined by fluorescence spectroscopy. Quenching of the fluorescence by acrylamide for wild type and active site mutants was collisional with almost 100% of the tryptophan fluorescence accessible under native condition and remained same after denaturation of protein with 6 M GdnHCl. In wild type Ll-CCRH1, the extent of quenching achieved with iodide (f(a) = 1.0) was significantly higher than cesium ions (f(a) = 0.33) suggesting more density of positive charge around surface of trp conformers under native conditions. Denaturation of wild type protein with 6 M GdnHCl led to significant increase in the quenching with cesium (f(a) = 0.54), whereas quenching with iodide ion was decreased (f(a) = 0.78), indicating reorientation of charge density around trp from positive to negative and heterogeneity in trp environment. The Stern-Volmer plots for wild type and mutants Ll-CCRH1 under native and denatured conditions, with cesium ion yielded biphasic quenching profiles. The extent of quenching for cesium and iodide ions under native and denatured conditions observed in active site mutants was significantly different from wild type Ll-CCRH1 under the same conditions. Thus, single substitution type mutations of active site residues showed heterogeneity in tryptophan microenvironment and differential degree of conformation of protein under native or denatured conditions.


Subject(s)
Aldehyde Oxidoreductases/chemistry , Fabaceae/enzymology , Fluorescence , Mutation/genetics , Acrylamide/chemistry , Acrylamide/metabolism , Aldehyde Oxidoreductases/genetics , Aldehyde Oxidoreductases/metabolism , Catalytic Domain , Cesium/chemistry , Cesium/metabolism , Kinetics , Mutagenesis, Site-Directed , Protein Binding , Protein Conformation , Protein Denaturation , Spectrometry, Fluorescence
18.
Bot Stud ; 55(1): 17, 2014 Dec.
Article in English | MEDLINE | ID: mdl-28510924

ABSTRACT

BACKGROUND: Gentiana scabra is commonly known as 'Longdan' is an important herb in traditional Chinese medicines, commonly used for the treatment of inflammation, anorexia, indigestion and gastric infections. Iridoids and secoiridoids are main bioactive compounds which attributed to the pharmacological properties of this plant. The use of hairy root cultures as an excellent alternative for the production of pharmaceutically important metabolites in less time period with ensured quality of raw materials. RESULTS: An efficient hairy root culture system of Gentiana scabra and influence of different plant growth regulators (PGRs) on the production of gentiopicroside, swertiamarin and loganic acid constituents were described. Leaf explants were infected with Agrobacterium rhizogenes, which induced hairy roots up to 21%. The transformed hairy root lines were confirmed by PCR using rolB and rolC gene-specific primers. Among various solid and liquid media, B5 liquid medium resulted maximum root biomass (36- fold higher) in 4-weeks. Quantitative analysis showed loganic acid was 6.6- fold higher in the presence of zeatin (1 mg/l) and gentiopicroside accumulation was 1.8- fold higher in the presence of naphthaleneacetic acid (NAA, 1 mg/l), as compared to the roots of plants grown in greenhouse. On the other hand, 1.4- and 2.5- fold higher gentiopicroside and swertiamarin were observed in the presence of 1.0 mg/l NAA as compared to commercial Gentiana herb No. 2. The result also showed iridoid and secoiridoid contents affected greatly by age, physiology and growing environment of the plant. CONCLUSIONS: The use of hairy root cultures is an excellent alternative to harvesting natural or in vitro grown plants to produce pharmaceutically important metabolites in less time with ensured quality.

19.
Int J Biol Macromol ; 60: 33-8, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23688416

ABSTRACT

Lack of three dimensional crystal structure of cinnamoyl CoA reductase (CCR) limits its detailed active site characterization studies. Putative active site residues involved in the substrate/NADPH binding and catalysis for Leucaena leucocephala CCR (Ll-CCRH1; GenBank: DQ986907) were identified by amino acid sequence alignment and homology modeling. Putative active site residues and proximal H215 were subjected for site directed mutagenesis, and mutated enzymes were expressed, purified and assayed to confirm their functional roles. Mutagenesis of S136, Y170 and K174 showed complete loss of activity, indicating their pivotal roles in catalysis. Mutant S212G exhibited the catalytic efficiencies less than 10% of wild type, showing its indirect involvement in substrate binding or catalysis. R51G, D77G, F30V and I31N double mutants showed significant changes in Km values, specifying their roles in substrate binding. Finally, chemical modification and substrate protection studies corroborated the presence Ser, Tyr, Lys, Arg and carboxylate group at the active site of Ll-CCRH1.


Subject(s)
Aldehyde Oxidoreductases/chemistry , Catalytic Domain , Fabaceae/enzymology , Aldehyde Oxidoreductases/genetics , Aldehyde Oxidoreductases/metabolism , Amino Acid Sequence , Binding Sites , Catalysis , Enzyme Activation , Fabaceae/genetics , Kinetics , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Protein Binding , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Structure-Activity Relationship , Substrate Specificity
20.
Int J Biol Macromol ; 58: 154-9, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23541561

ABSTRACT

Recombinant cinnamoyl CoA reductase 1 (Ll-CCRH1) protein from Leucaena leucocephala was overexpressed in Escherichia coli BL21 (DE3) strain and purified to apparent homogeneity. Optimum pH for forward and reverse reaction was found to be 6.5 and 7.8 respectively. The enzyme was most stable around pH 6.5 at 25°C for 90 min. The enzyme showed Kcat/Km for feruloyl, caffeoyl, sinapoyl, coumaroyl CoA, coniferaldehyde and sinapaldehyde as 4.6, 2.4, 2.3, 1.7, 1.9 and 1.2 (×10(6) M(-1) s(-1)), respectively, indicating affinity of enzyme for feruloyl CoA over other substrates and preference of reduction reaction over oxidation. Activation energy, Ea for various substrates was found to be in the range of 20-50 kJ/mol. Involvement of probable carboxylate ion, histidine, lysine or tyrosine at the active site of enzyme was predicted by pH activity profile. SAXS studies of protein showed radius 3.04 nm and volume 49.25 nm(3) with oblate ellipsoid shape. Finally, metal ion inhibition studies revealed that Ll-CCRH1 is a metal independent enzyme.


Subject(s)
Aldehyde Oxidoreductases/chemistry , Fabaceae/enzymology , Plant Proteins/chemistry , Amino Acid Sequence , Catalytic Domain , Coenzyme A/chemistry , Detergents/chemistry , Enzyme Stability , Escherichia coli , Esters , Hydrogen-Ion Concentration , Kinetics , Metals/chemistry , Molecular Sequence Data , Molecular Weight , Recombinant Proteins/chemistry , Scattering, Small Angle , Substrate Specificity , Thermodynamics , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...