Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 361: 121202, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38805959

ABSTRACT

The inlet of wastewater treatment plants (WWTPs) contains pathogenic microorganisms which during aeration and by mechanical mixing through wind typically aerosolized microbes into ambient air. Bioaerosol emission and its characterization (bacterial and fungal) was investigated considering low-flow and high-flow inlet of wastewater treatment plant. Generation of bioaerosols was found influenced by prevailing seasons while both during summer and winter, fungal concentration (winter: 1406 ± 517; summer: 1743 ± 271 CFU/m3) was higher compared to bacterial concentration (winter: 1077 ± 460; summer: 1415 ± 588 CFU/m3). Bioaerosols produced from WWTPs were predominately in the size range of 2.1-4.7 µm while fraction of fungal bioaerosols were also in ultra-fine range (0.65 µm). Bioaerosols reaching to the air from WWTPs varied seasonally and was calculated by aerosolization ratio. During summer, aerosolization of the bioaerosols was nearly 6 times higher than winter. To constitute potential health effects from the exposure to these bioaerosols, biological characterization, antibiotics resistance and the health survey of the nearby area were also performed. The biological characterization of the bioaerosols samples were done through metagenomic approach using 16s and ITS metagenomic sequencing. Presence of 167 genus of bacteria and 41 genus of fungi has been found. Out of this, bacillus (73%), curtobacterium (21%), pseudomonas, Exiguo bacterium, Acinetobacter bacillaceae, Enterobacteriaceae and Prevotella were the dominant genus (top 10) of bacteria. In case of fungi, xylariales (49%), Hypocreales (19%), Coperinopsis (9%), Alternaria (8%), Fusarium (6%), Biopolaris, Epicoccum, Pleosporaceae, Cladosporium and Nectriaceae were dominant. Antibiotics like, Azithromycin and cefixime were tested on the most dominant bacillus showed resistance on higher concentration of cefixime and lower concentration of azithromycin. Population-based health survey in WWTP nearby areas (50-150 m periphery) found several types of diseases/symptoms including respiratory problem, skin rash/irritation, change in smell and taste, eye irritation within the resident population and workers.


Subject(s)
Aerosols , Air Microbiology , Wastewater , Wastewater/microbiology , Aerosols/analysis , Bacteria , Fungi , Environmental Monitoring , Humans
2.
Environ Sci Pollut Res Int ; 30(52): 112277-112289, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37828262

ABSTRACT

The winter period is most ideal for studying near-surface aerosols in the Indo-Gangetic plains (IGP) of India, since this period is inundated with significantly higher concentrations of aerosols across the unique geographical domain because of shallow atmospheric boundary layer. This study focuses on analysing the concentration of the biotic component of aerosols (bioaerosols) in a central location of the IGP and estimating their dominance in ambient particulate matter (PM) from 2021 to 2023. Observations showed that bioaerosol concentrations also increased significantly with the increasing concentrations of PM2.5 and PM10, suggesting that bioaerosols are a dominant component of the total aerosol load in the atmosphere. The total microbe's concentration (collectively fungi and bacteria) was found to be 94 to 226 cfu m-3 in PM2.5 and 167 to 375 cfu m-3 in PM10 where bacteria contributed 81.12 and 79.99%, respectively. The contribution of fungal spores in PM2.5 and PM10 remained as 18.88 and 20.01%, respectively, in the total microbes in the respective particulate matter. In the bioaerosols, fungi, namely Aspergillus, Cladosporium, and Penicillium, were dominant, and bacteria, namely E. coli, Mammaliicoccus and Enterobacter, were prevalent in both the PM size regimes. The most prominent microbial presence was observed when the temperature ranged between 16 and 20°C and relative humidity between 80 and 85%. The outcomes of the present study will be useful for further research on the health effect of the bioaerosols in the IGP.


Subject(s)
Air Pollutants , Particulate Matter , Particulate Matter/analysis , Air Pollutants/analysis , Escherichia coli , Environmental Monitoring , Seasons , Bacteria , Aerosols/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...