Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Sens ; 8(8): 3014-3022, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37481776

ABSTRACT

Genetically encoded pH sensors based on fluorescent proteins are valuable tools for the imaging of cellular events that are associated with pH changes, such as exocytosis and endocytosis. Superecliptic pHluorin (SEP) is a pH-sensitive green fluorescent protein (GFP) variant widely used for such applications. Here, we report the rational design, development, structure, and applications of Lime, an improved SEP variant with higher fluorescence brightness and greater pH sensitivity. The X-ray crystal structure of Lime supports the mechanistic rationale that guided the introduction of beneficial mutations. Lime provides substantial improvements relative to SEP for imaging of endocytosis and exocytosis. Furthermore, Lime and its variants are advantageous for a broader range of applications including the detection of synaptic release and neuronal voltage changes.


Subject(s)
Neurons , Green Fluorescent Proteins/chemistry , Neurons/metabolism , Hydrogen-Ion Concentration
2.
Commun Biol ; 4(1): 1197, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34663888

ABSTRACT

The identity of a glycinergic synapse is maintained presynaptically by the activity of a surface glycine transporter, GlyT2, which recaptures glycine back to presynaptic terminals to preserve vesicular glycine content. GlyT2 loss-of-function mutations cause Hyperekplexia, a rare neurological disease in which loss of glycinergic neurotransmission causes generalized stiffness and strong motor alterations. However, the molecular underpinnings controlling GlyT2 activity remain poorly understood. In this work, we identify the Hedgehog pathway as a robust controller of GlyT2 expression and transport activity. Modulating the activation state of the Hedgehog pathway in vitro in rodent primary spinal cord neurons or in vivo in zebrafish embryos induced a selective control in GlyT2 expression, regulating GlyT2 transport activity. Our results indicate that activation of Hedgehog reduces GlyT2 expression by increasing its ubiquitination and degradation. This work describes a new molecular link between the Hedgehog signaling pathway and presynaptic glycine availability.


Subject(s)
Glycine Plasma Membrane Transport Proteins/genetics , Zebrafish Proteins/genetics , Animals , Embryo, Nonmammalian , Glycine Plasma Membrane Transport Proteins/metabolism , Hedgehog Proteins , Rats , Rats, Wistar , Signal Transduction , Zebrafish , Zebrafish Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...