Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther Oncolytics ; 31: 100751, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38075241

ABSTRACT

CD33 and CD123 are expressed on the surface of human acute myeloid leukemia blasts and other noncancerous tissues such as hematopoietic stem cells. On-target off-tumor toxicities may limit chimeric antigen receptor T cell therapies that target both CD33 and CD123. To overcome this limitation, we developed bispecific human CD33/CD123 chimeric antigen receptor (CAR) T cells with an "AND" logic gate. We produced novel CD33 and CD123 scFvs from monoclonal antibodies that bound CD33 and CD123 and activated T cells. Screening of CD33 and CD123 CAR T cells for cytotoxicity, cytokine production, and proliferation was performed, and we selected scFvs for CD33/CD123 bispecific CARs. The bispecific CARs split 4-1BB co-stimulation on one scFv and CD3ζ on the other. In vitro testing of cytokine secretion and cytotoxicity resulted in selecting bispecific CAR 1 construct for in vivo analysis. The CD33/CD123 bispecific CAR T cells were able to control acute myeloid leukemia (AML) in a xenograft AML mouse model similar to monospecific CD33 and CD123 CAR T cells while showing no on-target off-tumor effects. Based on our findings, human CD33/CD123 bispecific CAR T cells are a promising cell-based approach to prevent AML and support clinical investigation.

2.
Front Oncol ; 12: 1045016, 2022.
Article in English | MEDLINE | ID: mdl-36439420

ABSTRACT

Total body irradiation (TBI) is a commonly used conditioning regimen for hematopoietic stem cell transplant (HCT), but dose heterogeneity and long-term organ toxicity pose significant challenges. Total marrow irradiation (TMI), an evolving radiation conditioning regimen for HCT can overcome the limitations of TBI by delivering the prescribed dose targeted to the bone marrow (BM) while sparing organs at risk. Recently, our group demonstrated that TMI up to 20 Gy in relapsed/refractory AML patients was feasible and efficacious, significantly improving 2-year overall survival compared to the standard treatment. Whether such dose escalation is feasible in elderly patients, and how the organ toxicity profile changes when switching to TMI in patients of all ages are critical questions that need to be addressed. We used our recently developed 3D image-guided preclinical TMI model and evaluated the radiation damage and its repair in key dose-limiting organs in young (~8 weeks) and old (~90 weeks) mice undergoing congenic bone marrow transplant (BMT). Engraftment was similar in both TMI and TBI-treated young and old mice. Dose escalation using TMI (12 to 16 Gy in two fractions) was well tolerated in mice of both age groups (90% survival ~12 Weeks post-BMT). In contrast, TBI at the higher dose of 16 Gy was particularly lethal in younger mice (0% survival ~2 weeks post-BMT) while old mice showed much more tolerance (75% survival ~13 weeks post-BMT) suggesting higher radio-resistance in aged organs. Histopathology confirmed worse acute and chronic organ damage in mice treated with TBI than TMI. As the damage was alleviated, the repair processes were augmented in the TMI-treated mice over TBI as measured by average villus height and a reduced ratio of relative mRNA levels of amphiregulin/epidermal growth factor (areg/egf). These findings suggest that organ sparing using TMI does not limit donor engraftment but significantly reduces normal tissue damage and preserves repair capacity with the potential for dose escalation in elderly patients.

3.
Front Oncol ; 12: 969429, 2022.
Article in English | MEDLINE | ID: mdl-36147914

ABSTRACT

Sickle cell disease (SCD) is a serious global health problem, and currently, the only curative option is hematopoietic stem cell transplant (HCT). However, myeloablative total body irradiation (TBI)-based HCT is associated with high mortality/morbidity in SCD patients. Therefore, reduced-intensity (2-4 Gy) total body radiation (TBI) is currently used as a conditioning regimen resulting in mixed chimerism with the rescue of the SCD disease characteristic features. However, donor chimerism gradually reduces in a few years, resulting in a relapse of the SCD features, and organ toxicities remained the primary concern for long-term survivors. Targeted marrow irradiation (TMI) is a novel technique developed to deliver radiation to the desired target while sparing vital organs and is successfully used for HCT in refractory/relapsed patients with leukemia. However, it is unknown if TMI will be an effective treatment for a hematological disorder like SCD without adverse effects seen on TBI. Therefore, we examined preclinical feasibility to determine the tolerated dose escalation, its impact on donor engraftment, and reduction in organ damage using our recently developed TMI in the humanized homozygous Berkley SCD mouse model (SS). We show that dose-escalated TMI (8:2) (8 Gy to the bone marrow and 2 Gy to the rest of the body) is tolerated with reduced organ pathology compared with TBI (4:4)-treated mice. Furthermore, with increased SCD control (AA) mice (25 million) donor BM cells, TMI (8:2)-treated mice show successful long-term engraftment while engraftment failed in TBI (2:2)-treated mice. We further evaluated the benefit of dose-escalated TMI and donor cell engraftment in alleviating SCD features. The donor engraftment in SCD mice completely rescues SCD disease features including recovery in RBCs, hematocrit, platelets, and reduced reticulocytes. Moreover, two-photon microscopy imaging of skull BM of transplanted SCD mice shows reduced vessel density and leakiness compared to untreated control SCD mice, indicating vascular recovery post-BMT.

4.
Cancers (Basel) ; 14(5)2022 Feb 27.
Article in English | MEDLINE | ID: mdl-35267549

ABSTRACT

Engineered T cells expressing chimeric antigen receptors (CARs) on their cell surface can redirect antigen specificity. This ability makes CARs one of the most promising cancer therapeutic agents. CAR-T cells for treating patients with B cell hematological malignancies have shown impressive results. Clinical manifestation has yielded several trials, so far five CAR-T cell therapies have received US Food and Drug Administration (FDA) approval. However, emerging clinical data and recent findings have identified some immune-related toxicities due to CAR-T cell therapy. Given the outcome and utilization of the same proof of concept, further investigation in other hematological malignancies, such as leukemias, is warranted. This review discusses the previous findings from the pre-clinical and human experience with CAR-T cell therapy. Additionally, we describe recent developments of novel targets for adoptive immunotherapy. Here we present some of the early findings from the pre-clinical studies of CAR-T cell modification through advances in genetic engineering, gene editing, cellular programming, and formats of synthetic biology, along with the ongoing efforts to restore the function of exhausted CAR-T cells through epigenetic remodeling. We aim to shed light on the new targets focusing on acute myeloid leukemia (AML).

5.
Xenotransplantation ; 28(4): e12691, 2021 07.
Article in English | MEDLINE | ID: mdl-33904221

ABSTRACT

BACKGROUND: A major obstacle to the success of organ transplantation from pigs to humans, necessitated by the shortage of human organs, is robust humoral immune rejection by pig-reactive human antibodies. Mixed xenogeneic hematopoietic chimerism induces xenoreactive B cell tolerance in rodents, but whether mixed pig/human chimerism could induce tolerance of human B cells to pig xenoantigens is unknown. METHODS: We investigated this question using a humanized mouse model in which durable mixed (pig-human) xenogeneic chimerism can be established. RESULTS: Human natural anti-pig cytotoxic antibodies, predominantly IgM, are detectable in non-chimeric humanized mouse serum, and pig-reactive antibodies were reduced in mixed chimeric versus non-chimeric humanized mice. This difference required persistent mixed chimerism and was not due to the adsorption of antibodies on pig cells in vivo. Furthermore, human B cells from spleens of mixed chimeric mice produced lower levels of anti-pig antibodies when stimulated in vitro compared with those from non-chimeric mice. CONCLUSIONS: Our findings demonstrate that mixed chimerism reduces human natural antibodies to pig xenoantigens, providing the first in vivo evidence of human B cell tolerance induction by mixed xenogeneic chimerism and supporting further evaluation of this approach for inducing human B cell tolerance to xenografts.


Subject(s)
Chimerism , Immune Tolerance , Animals , Antigens, Heterophile , B-Lymphocytes , Bone Marrow Transplantation , Humans , Mice , Swine , Transplantation, Heterologous
6.
Int J Radiat Oncol Biol Phys ; 109(1): 60-72, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32841681

ABSTRACT

PURPOSE: Although vascular alterations in solid tumor malignancies are known to decrease therapeutic delivery, the effects of leukemia-induced bone marrow vasculature (BMV) alterations on therapeutic delivery are not well known. Additionally, functional quantitative measurements of the leukemic BMV during chemotherapy and radiation therapy are limited, largely due to a lack of high-resolution imaging techniques available preclinically. This study develops a murine model using compartmental modeling for quantitative multiphoton microscopy (QMPM) to characterize the malignant BMV before and during treatment. METHODS AND MATERIALS: Using QMPM, live time-lapsed images of dextran leakage from the local BMV to the surrounding bone marrow of mice bearing acute lymphoblastic leukemia (ALL) were taken and fit to a 2-compartment model to measure the transfer rate (Ktrans), fractional extracellular extravascular space (νec), and vascular permeability parameters, as well as functional single-vessel characteristics. In response to leukemia-induced BMV alterations, the effects of 2 to 4 Gy low-dose radiation therapy (LDRT) on the BMV, drug delivery, and mouse survival were assessed post-treatment to determine whether neoadjuvant LDRT before chemotherapy improves treatment outcome. RESULTS: Mice bearing ALL had significantly altered Ktrans, increased νec, and increased permeability compared with healthy mice. Angiogenesis, decreased single-vessel perfusion, and decreased vessel diameter were observed. BMV alterations resulted in disease-dependent reductions in cellular uptake of Hoechst dye. LDRT to mice bearing ALL dilated BMV, increased single-vessel perfusion, and increased daunorubicin uptake by ALL cells. Consequently, LDRT administered to mice before receiving nilotinib significantly increased survival compared with mice receiving LDRT after nilotinib, demonstrating the importance of LDRT conditioning before therapeutic administration. CONCLUSION: The developed QMPM enables single-platform assessments of the pharmacokinetics of fluorescent agents and characterization of the BMV. Initial results suggest BMV alterations after neoadjuvant LDRT may contribute to enhanced drug delivery and increased treatment efficacy for ALL. The developed QMPM enables observations of the BMV for use in ALL treatment optimization.


Subject(s)
Bone Marrow/blood supply , Neoadjuvant Therapy , Neovascularization, Pathologic , Precursor Cell Lymphoblastic Leukemia-Lymphoma/physiopathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/radiotherapy , Radiation Dosage , Animals , Cell Line, Tumor , Mice , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Radiotherapy Dosage , Tumor Microenvironment/radiation effects
8.
Clin Cancer Res ; 25(24): 7463-7474, 2019 12 15.
Article in English | MEDLINE | ID: mdl-31548348

ABSTRACT

PURPOSE: Acute myeloid leukemia (AML) is a highly aggressive form of leukemia, which results in poor survival outcomes. Currently, diagnosis and prognosis are based on invasive single-point bone marrow biopsies (iliac crest). There is currently no AML-specific noninvasive imaging method to detect disease, including in extramedullary organs, representing an unmet clinical need. About 85% to 90% of human myeloid leukemia cells express CD33 cell surface receptors, highlighting CD33 as an ideal candidate for AML immunoPET. EXPERIMENTAL DESIGN: We evaluated whether [64Cu]Cu-DOTA-anti-CD33 murine mAb can be used for immunoPET imaging of AML in a preclinical model. MicroCT was adjusted to detect spatial/anatomical details of PET activity. For translational purposes, a humanized anti-CD33 antibody was produced; we confirmed its ability to detect disease and its distribution. We reconfirmed/validated CD33 antibody-specific targeting with an antibody-drug conjugate (ADC) and radioimmunotherapy (RIT). RESULTS: [64Cu]Cu-DOTA-anti-CD33-based PET-CT imaging detected CD33+ AML in mice with high sensitivity (95.65%) and specificity (100%). The CD33+ PET activity was significantly higher in specific skeletal niches [femur (P < 0.00001), tibia (P = 0.0001), humerus (P = 0.0014), and lumber spine (P < 0.00001)] in AML-bearing mice (over nonleukemic control mice). Interestingly, the hybrid PET-CT imaging showed high disease activity in the epiphysis/metaphysis of the femur, indicating regional spatial heterogeneity. Anti-CD33 therapy using newly developed humanized anti-CD33 mAb as an ADC (P = 0.02) and [225Ac]Ac-anti-CD33-RIT (P < 0.00001) significantly reduced disease burden over that of respective controls. CONCLUSIONS: We have successfully developed a novel anti-CD33 immunoPET-CT-based noninvasive modality for AML and its spatial distribution, indicating a preferential skeletal niche.


Subject(s)
Copper Radioisotopes/chemistry , Heterocyclic Compounds, 1-Ring/chemistry , Immunoconjugates/pharmacokinetics , Leukemia, Myeloid, Acute/diagnostic imaging , Positron Emission Tomography Computed Tomography/methods , Radiopharmaceuticals/pharmacokinetics , Sialic Acid Binding Ig-like Lectin 3/immunology , Animals , Antibodies, Monoclonal, Humanized/pharmacokinetics , Cell Line, Tumor , Disease Models, Animal , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Inbred NOD , Mice, SCID , Sialic Acid Binding Ig-like Lectin 3/antagonists & inhibitors , Tissue Distribution , Xenograft Model Antitumor Assays
9.
J Microbiol Biotechnol ; 18(9): 1522-8, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18852507

ABSTRACT

The morphogenetic behavior of a tropical marine Yarrowia lipolytica strain on hydrophobic substrates was studied. Media containing coconut oil or palm kernel oil (rich in lauric and myristic acids) prepared in distilled water or seawater at a neutral pH supported 95% of the cells to undergo a transition from the yeast form to the mycelium form. With potassium laurate, 51% of the cells were in the mycelium form, whereas with myristate, 32% were in the mycelium form. However, combinations of these two fatty acids in proportions that are present in coconut oil or palm kernel oil enhanced the mycelium formation to 65%. The culture also produced extracellular lipases during the morphogenetic change. The yeast cells were found to attach to the large droplets of the hydrophobic substrates during the transition, while the mycelia were associated with the aqueous phase. The alkane-grown yeast partitioned more efficiently in the hydrophobic phases when compared with the coconut oil-grown mycelia. A fatty acid analysis of the mycelial form revealed the presence of lauric acid in addition to the long-chain saturated and unsaturated fatty acids observed in the yeast form. The mycelia underwent a rapid transition to the yeast form with n-dodecane, a medium-chain aliphatic hydrocarbon. Thus, the fungus displayed a differential behavior towards the two types of saturated hydrophobic substrates.


Subject(s)
Alkanes/pharmacology , Mycelium/cytology , Plant Oils/pharmacology , Yarrowia/cytology , Yarrowia/drug effects , Culture Media , Hydrophobic and Hydrophilic Interactions , Lauric Acids/pharmacology , Lipase/metabolism , Mycelium/drug effects , Mycelium/growth & development , Myristic Acid/pharmacology , Salinity , Yarrowia/enzymology , Yarrowia/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...