Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 33(27)2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35358963

ABSTRACT

Four distinct tungsten suboxide (WO3-x) nanomaterials were synthesized via chemical vapour transport reaction and the role of their crystal structures on the optical properties was studied. These materials grow either as thin, quasi-2D crystals with the WnO3n-1formula (in shape of platelets or nanotiles), or as nanowires (W5O14, W18O49). For the quasi-2D materials, the appearance of defect states gives rise to two indirect absorption edges. One is assigned to the regular bandgap occurring between the valence and the conduction band, while the second is a defect-induced band. While the bandgap values of platelets and nanotiles are in the upper range of the reported values for the suboxides, the nanowires' bandgaps are lower due to the higher number of free charge carriers. Both types of nanowires sustain localized surface plasmon resonances, as evidenced from the extinction measurements, whereas the quasi-2D materials exhibit excitonic transitions. All four materials have photoluminescence emission peaks in the UV region. The interplay of the crystal structure, oxygen vacancies and shape can result in changes in optical behaviour, and the understanding of these effects could enable intentional tuning of selected properties.

2.
Nanomaterials (Basel) ; 11(8)2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34443817

ABSTRACT

WnO3n-1 nanotiles, with multiple stoichiometries within one nanotile, were synthesized via the chemical vapour transport method. They grow along the [010] crystallographic axis, with the thickness ranging from a few tens to a few hundreds of nm, with the lateral size up to several µm. Distinct surface corrugations, up to a few 10 nm deep appear during growth. The {102}r crystallographic shear planes indicate the WnO3n-1 stoichiometries. Within a single nanotile, six stoichiometries were detected, namely W16O47 (WO2.938), W15O44 (WO2.933), W14O41 (WO2.928), W13O38 (WO2.923), W12O35 (WO2.917), and W11O32 (WO2.909), with the last three never being reported before. The existence of oxygen vacancies within the crystallographic shear planes resulted in the observed non-zero density of states at the Fermi energy.

3.
Polymers (Basel) ; 13(11)2021 May 24.
Article in English | MEDLINE | ID: mdl-34074064

ABSTRACT

Biocompatible and biodegradable poly-l-lactic acid (PLLA) processed into piezoelectric structures has good potential for use in medical applications, particularly for promoting cellular growth during electrostimulation. Significant advantages like closer contacts between cells and films are predicted when their surfaces are modified to make them more hydrophilic. However, there is an open question about whether the surface modification will affect the degradation process and how the films will be changed as a result. For the first time, we demonstrate that improving the polymer surface's wettability affects the position of enzyme-driven degradation. Although it is generally considered that proteinase K degrades only the polymer surface, we observed the enzyme's ability to induce both surface and bulk degradation. In hydrophilic films, degradation occurs at the surface, inducing surface erosion, while for hydrophobic films, it is located inside the films, inducing bulk erosion. Accordingly, changes in the structural, morphological, mechanical, thermal and wetting properties of the film resulting from degradation vary, depending on the film's wettability. Most importantly, the degradation is gradual, so the mechanical and piezoelectric properties are retained during the degradation.

4.
Nanoscale ; 12(28): 15102-15114, 2020 Jul 23.
Article in English | MEDLINE | ID: mdl-32644095

ABSTRACT

Quasi-two-dimensional tungsten oxide structures, which nucleate by epitaxial growth on W19O55 nanowires (NW) and grow as thin platelets, were identified. Both the nanowires and the platelets accommodate oxygen deficiency by the formation of crystallographic shear planes. Stoichiometric phases, W18O53 (WO2.944), W17O50 (WO2.941), W16O47 (WO2.938), W15O44 (WO2.933), W14O41 (WO2.929), W10O29 (WO2.9), and W9O26 (WO2.889), syntactically grow inside a single platelet. These layered crystals show a new kind of polycrystallinity, where crystallographic shear planes accommodate oxygen deficiency and at the same time stabilize this multi-stoichiometric structure.

5.
Phys Chem Chem Phys ; 20(32): 20812-20820, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-30004095

ABSTRACT

Transition metal dichalcogenide materials have recently been shown to exhibit a variety of intriguing optical and electronic phenomena. Focusing on the optical properties of semiconducting WS2 nanotubes, we show here that these nanostructures exhibit strong light-matter interaction and form exciton-polaritons. Namely, these nanotubes act as quasi 1-D polaritonic nano-systems and sustain both excitonic features and cavity modes in the visible-near infrared range. This ability to confine light to subwavelength dimensions under ambient conditions is induced by the high refractive index of tungsten disulfide. Using "finite-difference time-domain" (FDTD) simulations we investigate the interactions between the excitons and the cavity mode and their effect on the extinction spectrum of these nanostructures. The results of FDTD simulations agree well with the experimental findings as well as with a phenomenological coupled oscillator model which suggests a high Rabi splitting of ∼280 meV. These findings open up possibilities for developing new concepts in nanotube-based photonic devices.

6.
J Am Chem Soc ; 139(37): 12865-12878, 2017 09 20.
Article in English | MEDLINE | ID: mdl-28777567

ABSTRACT

Inorganic nanotubes (NTs) and fullerene-like nanoparticles (NPs) of WS2 were discovered some 25 years ago and are produced now on a commercial scale for various applications. This Perspective provides a brief description of recent progress in this scientific discipline. The conceptual evolution leading to the discovery of these NTs and NPs is briefly discussed. Subsequently, recent progress in the synthesis of such NPs from a variety of inorganic compounds with layered (2D) structure is described. In particular, we discuss the synthesis of NTs from chalcogenide- and oxide-based ternary misfit layered compounds, as well as their structure and different growth mechanisms. Next we deliberate on the mechanical, optical, electrical, and electromechanical properties, which delineate them from their bulk counterparts and also from their graphene-like analogues. Here, different experiments with individual NTs coupled with first-principles and molecular dynamics calculations demonstrate the unique physical nature of these quasi-1D nanostructures. Finally, the various applications of the fullerene-like NPs of WS2 and NTs formed therefrom are deliberated. Foremost among the possibilities are their extensive uses as superior solid lubricants. Combined with their nontoxicity and their facile dispersion, these NTs, with an ultimate strength of about 20 GPa, are likely to find numerous applications in reinforcing polymers, adhesives, textiles, medical devices, metallic alloys, and even concrete. Other potential applications in energy-harvesting and catalysis are discussed in brief.

7.
ACS Omega ; 2(6): 2649-2656, 2017 Jun 30.
Article in English | MEDLINE | ID: mdl-31457606

ABSTRACT

The study of inorganic nanometer-scale materials with hollow closed-cage structures, such as inorganic fullerene-like (IF) nanostructures and inorganic nanotubes (INTs), is a rapidly growing field. Numerous kinds of IF nanostructures and INTs were synthesized for a variety of applications, particularly for lubrication, functional coatings, and reinforcement of polymer matrices. To date, such nanostructures have been synthesized mostly by heating a transition metal or oxide thereof in the presence of precursor gases, which are however toxic and hazardous. In this context, one frontier of research in this field is the development of new avenues for the green synthesis of IF structures and INTs, directly from the bulk of layered compounds. In the present work, we demonstrate a simple room-temperature and environmentally friendly approach for the synthesis of IF nanostructures and INTs via ultrashort-pulse laser ablation of a mixture of transition-metal dichalcogenides in bulk form mixed with Pb/PbO, in ambient air. The method can be considered as a synergy of photothermally and photochemically induced chemical transformations. The ultrafast-laser-induced excitation of the material, complemented with the formation of extended hot annealing regions in the presence of the metal catalyst, facilitates the formation of different nanostructures. Being fast, easy, and material-independent, our method offers new opportunities for the synthesis of IF nanostructures and INTs from different bulk metal chalcogenide compounds. On the basis of the capabilities of laser technology as well, this method could advantageously be further developed into a versatile tool for the simultaneous growth and patterning of such nanostructures in preselected positions for a variety of applications.

8.
Chem Asian J ; 10(10): 2234-9, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26097214

ABSTRACT

Palladium nanoparticles were deposited on multiwall WS2 nanotubes. The composite nanoparticles were characterized by a variety of techniques. The Pd nanoparticles were deposited uniformly on the surface of WS2 nanotubes. An epitaxial relationship between the (111) plane of Pd and the (013) plane of WS2 was mostly observed. The composite nanoparticles were found to perform efficiently as catalysts for cross-coupling (Heck and Suzuki) reactions. The role of the nanotubes' support in the catalytic process is briefly discussed.

9.
Nanoscale Res Lett ; 6: 593, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-22085544

ABSTRACT

We report on the first exfoliation of MoS2 coaxial nanotubes. The single-layer flakes, as the result of exfoliation, represent the transition metal dichalcogenides' analogue of graphene. They show a very low degree of restacking in comparison with exfoliation of MoS2 plate-like crystals. MoS2 monolayers were investigated by means of electron and atomic force microscopies, showing their structure, and ultraviolet-visible spectrometry, revealing quantum confinement as the consequence of the nanoscale size in the z-direction.

SELECTION OF CITATIONS
SEARCH DETAIL
...