Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neural Regen Res ; 18(2): 299-305, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35900407

ABSTRACT

Currently, there is no cure for traumatic spinal cord injury but one therapeutic approach showing promise is gene therapy. In this systematic review and meta-analysis, we aim to assess the efficacy of gene therapies in pre-clinical models of spinal cord injury and the risk of bias. In this meta-analysis, registered at PROSPERO (Registration ID: CRD42020185008), we identified relevant controlled in vivo studies published in English by searching the PubMed, Web of Science, and Embase databases. No restrictions of the year of publication were applied and the last literature search was conducted on August 3, 2020. We then conducted a random-effects meta-analysis using the restricted maximum likelihood estimator. A total of 71 studies met our inclusion criteria and were included in the systematic review. Our results showed that overall, gene therapies were associated with improvements in locomotor score (standardized mean difference [SMD]: 2.07, 95% confidence interval [CI]: 1.68-2.47, Tau2 = 2.13, I2 = 83.6%) and axonal regrowth (SMD: 2.78, 95% CI: 1.92-3.65, Tau2 = 4.13, I2 = 85.5%). There was significant asymmetry in the funnel plots of both outcome measures indicating the presence of publication bias. We used a modified CAMARADES (Collaborative Approach to Meta-Analysis and Review of Animal Data in Experimental Studies) checklist to assess the risk of bias, finding that the median score was 4 (IQR: 3-5). In particular, reports of allocation concealment and sample size calculations were lacking. In conclusion, gene therapies are showing promise as therapies for spinal cord injury repair, but there is no consensus on which gene or genes should be targeted.

2.
J Neurosci ; 39(42): 8330-8346, 2019 10 16.
Article in English | MEDLINE | ID: mdl-31409666

ABSTRACT

Millions of patients suffer from debilitating spinal cord injury (SCI) without effective treatments. Elevating cAMP promotes CNS neuron growth in the presence of growth-inhibiting molecules. cAMP's effects on neuron growth are partly mediated by Epac, comprising Epac1 and Epac2; the latter predominantly expresses in postnatal neural tissue. Here, we hypothesized that Epac2 activation would enhance axonal outgrowth after SCI. Using in vitro assays, we demonstrated, for the first time, that Epac2 activation using a specific soluble agonist (S-220) significantly enhanced neurite outgrowth of postnatal rat cortical neurons and markedly overcame the inhibition by chondroitin sulfate proteoglycans and mature astrocytes on neuron growth. We further investigated the novel potential of Epac2 activation in promoting axonal outgrowth by an ex vivo rat model of SCI mimicking post-SCI environment in vivo and by delivering S-220 via a self-assembling Fmoc-based hydrogel that has suitable properties for SCI repair. We demonstrated that S-220 significantly enhanced axonal outgrowth across the lesion gaps in the organotypic spinal cord slices, compared with controls. Furthermore, we elucidated, for the first time, that Epac2 activation profoundly modulated the lesion environment by reducing astrocyte/microglial activation and transforming astrocytes into elongated morphology that guided outgrowing axons. Finally, we showed that S-220, when delivered by the gel at 3 weeks after contusion SCI in male adult rats, resulted in significantly better locomotor performance for up to 4 weeks after treatment. Our data demonstrate a promising therapeutic potential of S-220 in SCI, via beneficial effects on neurons and glia after injury to facilitate axonal outgrowth.SIGNIFICANCE STATEMENT During development, neuronal cAMP levels decrease significantly compared with the embryonic stage when the nervous system is established. This has important consequences following spinal cord injury, as neurons fail to regrow. Elevating cAMP levels encourages injured CNS neurons to sprout and extend neurites. We have demonstrated that activating its downstream effector, Epac2, enhances neurite outgrowth in vitro, even in the presence of an inhibitory environment. Using a novel biomaterial-based drug delivery system in the form of a hydrogel to achieve local delivery of an Epac2 agonist, we further demonstrated that specific activation of Epac2 enhances axonal outgrowth and minimizes glial activation in an ex vivo model of spinal cord injury, suggesting a new strategy for spinal cord repair.


Subject(s)
Chondroitin Sulfate Proteoglycans/metabolism , Guanine Nucleotide Exchange Factors/agonists , Neuronal Outgrowth/drug effects , Neurons/drug effects , Recovery of Function/physiology , Spinal Cord Injuries/metabolism , Animals , Astrocytes/metabolism , Neurites/physiology , Neurons/metabolism , Rats , Spinal Cord Regeneration/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...