Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Int J Mol Sci ; 25(1)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38203361

ABSTRACT

Micro RNAs (miRNAs) are short non-coding RNAs that act as post-transcriptional gene expression regulators. Genes regulated in vertebrates include those affecting growth and development or stress and immune response. Pikeperch (Sander lucioperca) is a species that is increasingly being considered for farming in recirculation aquaculture systems. We characterized the pikeperch miRNA repertoire to increase the knowledge of the genomic mechanisms affecting performance and health traits by applying small RNA sequencing to different developmental stages and organs. There were 234 conserved and 8 novel miRNA genes belonging to 104 families. A total of 375 unique mature miRNAs were processed from these genes. Many mature miRNAs showed high relative abundances or were significantly more expressed at early developmental stages, like the miR-10 and miR-430 family, let-7, the miRNA clusters 106-25-93, and 17-19-92. Several miRNAs associated with immune responses (e.g., slu-mir-731-5p, slu-mir-2188-5p, and slu-mir-8159-5p) were enriched in the spleen. The mature miRNAs slu-mir-203a-3p and slu-mir-205-5p were enriched in gills. These miRNAs are similarly abundant in many vertebrates, indicating that they have shared regulatory functions. There was also a significantly increased expression of the disease-associated miR-462/miR-731 cluster in response to hypoxia stress. This first pikeperch miRNAome reference resource paves the way for future functional studies to identify miRNA-associated variations that can be utilized in marker-assisted breeding programs.


Subject(s)
MicroRNAs , Humans , Animals , MicroRNAs/genetics , Agriculture , Aquaculture , Breeding , Genomics
2.
Cancers (Basel) ; 14(22)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36428697

ABSTRACT

Background: Genetic testing for hereditary cancers is inconsistently applied within the healthcare systems in Latin America. In Peru, the prevalence and spectrum of cancer-predisposing germline variants is thus poorly characterized. Purpose: To determine the spectrum and prevalence of cancer-predisposing germline variants and variants of uncertain significance (VUS) in high-risk individuals located in a Peruvian low-resource setting city. Methods: Individuals presenting clinical criteria for hereditary cancer syndromes or being unaffected with familial history of cancer were included in the study. Samples from a total of 84 individuals were subjected to a high-throughput DNA sequencing assay that targeted a panel of 94 cancer predisposition genes. The pathogenicity of detected germline variants was classified according to the established American College of Medical Genetics and Genomics (ACMG) criteria. All pathogenic variants were validated by cycling temperature capillary electrophoresis. Results: We identified a total of eight pathogenic variants, found in 19 out of 84 individuals (23%). Pathogenic variants were identified in 24% (10/42) of unaffected individuals with family history of cancer and in 21% (9/42) of individuals with a cancer diagnosis. Pathogenic variants were identified in eight genes: RET (3), BRCA1 (3), SBDS (2), SBDS/MLH1 (4), MLH1 (4), TP53 (1), FANCD2 (1), DDB2/FANCG (1). In cancer cases, all colon cancer cases were affected by pathogenic variants in MLH1 and SBDS genes, while 20% (2/10) of the thyroid cancer cases by RET c.1900T>C variants were affected. One patient with endometrial cancer (1/3) had a double heterozygous pathogenic variant in DDB2 and FANCG genes, while one breast cancer patient (1/14) had a pathogenic variant in TP53 gene. Overall, each individual presented at least 17 VUS, totaling 1926 VUS for the full study population. Conclusion: We describe the first genetic characterization in a low-resource setting population where genetic testing is not yet implemented. We identified multiple pathogenic germline variants in clinically actionable predisposition genes, that have an impact on providing an appropriate genetic counselling and clinical management for individuals and their relatives who carry these variants. We also reported a high number of VUS, which may indicate variants specific for this population and may require a determination of their clinical significance.

3.
Int J Mol Sci ; 23(15)2022 Aug 08.
Article in English | MEDLINE | ID: mdl-35955964

ABSTRACT

Smoltification (parr-smolt transformation) is a complex developmental process consisting of developmental changes that lead to remodeling of the Atlantic salmon gill. Here, the expression changes of miRNAs and mRNAs were studied by small-RNA sequencing and microarray analysis, respectively, to identify miRNAs and their predicted targets associated with smoltification and subsequent sea water adaptation (SWA). In total, 18 guide miRNAs were identified as differentially expressed (gDE miRNAs). Hierarchical clustering analysis of expression changes divided these into one cluster of 13 gDE miRNAs with decreasing expression during smoltification and SWA that included the miRNA-146, miRNA-30 and miRNA-7132 families. Another smaller cluster that showed increasing expression consisted of miR-101a-3p, miR-193b-5p, miR-499a-5p, miR-727a-3p and miR-8159-5p. The gDE miRNAs were predicted to target 747 of the genes (DE mRNAs), showing expression changes in the microarray analysis. The predicted targets included genes encoding NKA-subunits, aquaporin-subunits, cystic fibrosis transmembrane conductance regulator and the solute carrier family. Furthermore, the predicted target genes were enriched in biological processes associated with smoltification and SWA (e.g., immune system, reactive oxygen species, stress response and extracellular matrix organization). Collectively, the results indicate that remodeling of the gill involves the post-transcriptional regulation of gene expression by the characterized gDE miRNAs.


Subject(s)
MicroRNAs , Salmo salar , Animals , Gene Expression , Gills/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Salmo salar/genetics , Salmo salar/metabolism , Seawater
4.
Biology (Basel) ; 11(5)2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35625416

ABSTRACT

Optimal smoltification is crucial for normal development, growth, and health of farmed Atlantic salmon in seawater. Here, we characterize miRNA expression in liver to reveal whether miRNAs regulate gene expression during this developmental transition. Expression changes of miRNAs and mRNAs was studied by small-RNA sequencing and microarray analysis, respectively. This revealed 62 differentially expressed guide miRNAs (gDE-miRNAs) that could be divided into three groups with characteristic dynamic expression patterns. Three of miRNA families are known as highly expressed in liver. A rare arm shift was observed during smoltification in the Atlantic salmon-specific novel-ssa-miR-16. The gDE-miRNAs were predicted to target 2804 of the genes revealing expression changes in the microarray analysis. Enrichment analysis revealed that targets were significantly enriched in smoltification-associated biological process groups. These included lipid and cholesterol synthesis, carbohydrate metabolism, protein metabolism and protein transport, immune system genes, circadian rhythm and stress response. The results indicate that gDE-miRNAs may regulate many of the changes associated with this developmental transition in liver. The results pave the way for validation of the predicted target genes and further study of gDE-miRNA and their targets by functional assays.

5.
Biology (Basel) ; 11(1)2022 Jan 13.
Article in English | MEDLINE | ID: mdl-35053128

ABSTRACT

MicroRNAs (miRNAs) are endogenous small RNA molecules involved in the post-transcriptional regulation of protein expression by binding to the mRNA of target genes. They are key regulators in teleost development, maintenance of tissue-specific functions, and immune responses. Lumpfish (Cyclopterus lumpus) is becoming an emergent aquaculture species as it has been utilized as a cleaner fish to biocontrol sea lice (e.g., Lepeophtheirus salmonis) infestation in the Atlantic Salmon (Salmo salar) aquaculture. The lumpfish miRNAs repertoire is unknown. This study identified and characterized miRNA encoding genes in lumpfish from three developmental stages (adult, embryos, and larvae). A total of 16 samples from six different adult lumpfish organs (spleen, liver, head kidney, brain, muscle, and gill), embryos, and larvae were individually small RNA sequenced. Altogether, 391 conserved miRNA precursor sequences (discovered in the majority of teleost fish species reported in miRbase), eight novel miRNA precursor sequences (so far only discovered in lumpfish), and 443 unique mature miRNAs were identified. Transcriptomics analysis suggested organ-specific and age-specific expression of miRNAs (e.g., miR-122-1-5p specific of the liver). Most of the miRNAs found in lumpfish are conserved in teleost and higher vertebrates, suggesting an essential and common role across teleost and higher vertebrates. This study is the first miRNA characterization of lumpfish that provides the reference miRNAome for future functional studies.

6.
Microb Genom ; 7(4)2021 04.
Article in English | MEDLINE | ID: mdl-33885360

ABSTRACT

Outbreak investigations are essential to control and prevent the dissemination of pathogens. This study developed and validated a complete analysis protocol for faster and more accurate surveillance and outbreak investigations of antibiotic-resistant microbes based on Oxford Nanopore Technologies (ONT) DNA whole-genome sequencing. The protocol was developed using 42 methicillin-resistant Staphylococcus aureus (MRSA) isolates identified from former well-characterized outbreaks. The validation of the protocol was performed using Illumina technology (MiSeq, Illumina). Additionally, a real-time outbreak investigation of six clinical S. aureus isolates was conducted to test the ONT-based protocol. The suggested protocol includes: (1) a 20 h sequencing run; (2) identification of the sequence type (ST); (3) de novo genome assembly; (4) polishing of the draft genomes; and (5) phylogenetic analysis based on SNPs. After the sequencing run, it was possible to identify the ST in 2 h (20 min per isolate). Assemblies were achieved after 4 h (40 min per isolate) while the polishing was carried out in 7 min per isolate (42 min in total). The phylogenetic analysis took 0.6 h to confirm an outbreak. Overall, the developed protocol was able to at least discard an outbreak in 27 h (mean) after the bacterial identification and less than 33 h to confirm it. All these estimated times were calculated considering the average time for six MRSA isolates per sequencing run. During the real-time S. aureus outbreak investigation, the protocol was able to identify two outbreaks in less than 31 h. The suggested protocol enables identification of outbreaks in early stages using a portable and low-cost device along with a streamlined downstream analysis, therefore having the potential to be incorporated in routine surveillance analysis workflows. In addition, further analysis may include identification of virulence and antibiotic resistance genes for improved pathogen characterization.


Subject(s)
Methicillin-Resistant Staphylococcus aureus/isolation & purification , Sequence Analysis, DNA/methods , Staphylococcal Infections/microbiology , Disease Outbreaks , Epidemiological Monitoring , Genome, Bacterial , Humans , Methicillin-Resistant Staphylococcus aureus/classification , Methicillin-Resistant Staphylococcus aureus/genetics , Norway/epidemiology , Phylogeny , Staphylococcal Infections/epidemiology
8.
Sci Data ; 6(1): 116, 2019 07 05.
Article in English | MEDLINE | ID: mdl-31278253

ABSTRACT

Colorectal cancer is a heterogenous and mostly sporadic disease, the development of which is associated with microbial dysbiosis. Recent advances in subtype classification have successfully stratified the disease using molecular profiling. To understand potential relationships between molecular mechanisms differentiating the subtypes of colorectal cancer and composition of gut microbial community, we classified a set of 34 tumour samples into molecular subtypes using RNA-sequencing gene expression profiles and determined relative abundances of bacterial taxonomic groups. To identify bacterial community composition, 16S rRNA amplicon metabarcoding was used as well as whole genome metagenomics of the non-human part of RNA-sequencing data. The generated data expands the collection of the data sources related to the disease and connects molecular aspects of the cancer with environmental impact of microbial community.


Subject(s)
Colorectal Neoplasms/genetics , Colorectal Neoplasms/microbiology , Gastrointestinal Microbiome , Metagenomics , Transcriptome , Aged , Aged, 80 and over , Bacteria/classification , DNA Barcoding, Taxonomic , Female , Humans , Male , Middle Aged , RNA, Ribosomal, 16S/genetics , RNA-Seq
9.
Mol Phylogenet Evol ; 133: 352-361, 2019 04.
Article in English | MEDLINE | ID: mdl-30599197

ABSTRACT

Mammalian genomes contain a number of duplicated genes, and sequence identity between these duplicates can be maintained by purifying selection. However, between-duplicate recombination can also maintain sequence identity between copies, resulting in a pattern known as concerted evolution where within-genome repeats are more similar to each other than to orthologous repeats in related species. Here we investigated the tandemly-repeated keratin-associated protein 1 (KAP1) gene family, KRTAP1, which encodes proteins that are important components of hair and wool in mammals. Comparison of eutherian mammal KRTAP1 gene repeats within and between species shows a strong pattern of concerted evolution. However, in striking contrast to the coding regions of these genes, we find that the flanking regions have a divergent pattern of evolution. This contrast in evolutionary pattern transitions abruptly near the start and stop codons of the KRTAP1 genes. We reveal that this difference in evolutionary patterns is not explained by conventional purifying selection, nor is it likely a consequence of codon adaptation or reverse transcription of KRTAP1-n mRNA. Instead, the evidence suggests that these contrasting patterns result from short-tract gene conversion events that are biased to the KRTAP1 coding region by selection and/or differential sequence divergence. This work demonstrates the power that gene conversion has to finely shape the evolution of repetitive genes, and provides another distinctive pattern of contrasting evolutionary outcomes that results from gene conversion. A greater emphasis on exploring the evolution of multi-gene eukaryotic families will reveal how common different contrasting evolutionary patterns are in gene duplicates.


Subject(s)
Evolution, Molecular , Keratins/genetics , Mammals/genetics , Open Reading Frames/genetics , Animals , Base Sequence , Codon/genetics , DNA, Intergenic/genetics , Gene Conversion , Keratins/metabolism , Phylogeny , Polymorphism, Genetic , RNA, Messenger/genetics , RNA, Messenger/metabolism , Selection, Genetic , Sheep/genetics , Tandem Repeat Sequences/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...