Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38496509

ABSTRACT

Chronic, asymptomatic malaria infections contribute substantially to disease transmission and likely represent the most significant impediment preventing malaria elimination and eradication. Plasmodium falciparum parasites evade antibody recognition through transcriptional switching between members of the var gene family, which encodes the major virulence factor and surface antigen on infected red blood cells. This process can extend infections for up to a year; however, infections have been documented to last for over a decade, constituting an unseen reservoir of parasites that undermine eradication and control efforts. How parasites remain immunologically "invisible" for such lengthy periods is entirely unknown. Here we show that in addition to the accepted paradigm of mono-allelic var gene expression, individual parasites can simultaneously express multiple var genes or enter a state in which little or no var gene expression is detectable. This unappreciated flexibility provides parasites with greater adaptive capacity than previously understood and challenges the dogma of mutually exclusive var gene expression. It also provides an explanation for the antigenically "invisible" parasites observed in chronic asymptomatic infections.

2.
Proc Natl Acad Sci U S A ; 120(17): e2302152120, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37068249

ABSTRACT

The primary antigenic and virulence determinant of the human malaria parasite Plasmodium falciparum is a variant surface protein called PfEMP1. Different forms of PfEMP1 are encoded by a multicopy gene family called var, and switching between active genes enables the parasites to evade the antibody response of their human hosts. var gene switching is key for the maintenance of chronic infections; however, what controls switching is unknown, although it has been suggested to occur at a constant frequency with little or no environmental influence. var gene transcription is controlled epigenetically through the activity of histone methyltransferases (HMTs). Studies in model systems have shown that metabolism and epigenetic control of gene expression are linked through the availability of intracellular S-adenosylmethionine (SAM), the principal methyl donor in biological methylation modifications, which can fluctuate based on nutrient availability. To determine whether environmental conditions and changes in metabolism can influence var gene expression, P. falciparum was cultured in media with altered concentrations of nutrients involved in SAM metabolism. We found that conditions that influence lipid metabolism induce var gene switching, indicating that parasites can respond to changes in their environment by altering var gene expression patterns. Genetic modifications that directly modified expression of the enzymes that control SAM levels similarly led to profound changes in var gene expression, confirming that changes in SAM availability modulate var gene switching. These observations directly challenge the paradigm that antigenic variation in P. falciparum follows an intrinsic, programed switching rate, which operates independently of any external stimuli.


Subject(s)
Malaria, Falciparum , Parasites , Animals , Humans , Plasmodium falciparum/metabolism , Parasites/metabolism , Gene Expression Regulation , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Malaria, Falciparum/parasitology , Antigenic Variation/genetics
3.
Elife ; 112022 12 14.
Article in English | MEDLINE | ID: mdl-36515978

ABSTRACT

Malaria parasites avoid immune clearance through their ability to systematically alter antigens exposed on the surface of infected red blood cells. This is accomplished by tightly regulated transcriptional control of individual members of a large, multicopy gene family called var and is the key to both the virulence and chronic nature of malaria infections. Expression of var genes is mutually exclusive and controlled epigenetically, however how large populations of parasites coordinate var gene switching to avoid premature exposure of the antigenic repertoire is unknown. Here, we provide evidence for a transcriptional network anchored by a universally conserved gene called var2csa that coordinates the switching process. We describe a structured switching bias that shifts overtime and could shape the pattern of var expression over the course of a lengthy infection. Our results provide an explanation for a previously mysterious aspect of malaria infections and shed light on how parasites possessing a relatively small repertoire of variant antigen-encoding genes can coordinate switching events to limit antigen exposure, thereby maintaining chronic infections.


Malaria causes severe illness and deaths in hundreds of thousands of people each year. Most of them are young children in Sub-Saharan Africa. The disease is transmitted when a mosquito carrying single-celled Plasmodium parasites bites a human, introducing the parasites into the bloodstream, where they enter red blood cells. When a red blood cell becomes infected, the parasite presents a protein on the cell's surface that the immune system can recognize to start fighting the infection. Immune cells then produce antibodies that flag infected cells for destruction, relieving the symptoms of the disease. To avoid being destroyed in this manner, the parasites repeatedly 'change' the protein that ends up on the surface of the red blood cells. With each change, the number of parasites rebounds, symptoms return, and the immune system must produce new antibodies. As the parasites and immune system battle it out, patients may experience repeated flare-ups of symptoms for well over a year. To change the protein that is presented on the surface of red blood cells, Plasmodium parasites switch the genes in the var gene family on and off one at a time. Each of these genes encodes a different surface protein, and the parasites may cycle through the entire var gene family during an infection. However, it remains a mystery how the millions of infecting parasites coordinate to produce the same surface protein each time. Zhang et al. show that a gene from Plasmodium parasites called var2csa is responsible for coordinating protein switching through a set pattern that allows the parasites to synchronize which protein they switch to next. Deleting the var2csa gene in malaria parasites blocks protein switching and disables this coordinated immune evasion tactic. Zhang et al.'s experiments provide new insights about protein switching in malaria parasites. Further research may help scientists characterize each step in the process and identify which steps can be targeted to treat malaria. While not a cure, treatments that disable protein switching could reduce the number of times patients relapse and relieve symptoms. More generally, the results of Zhang et al. describe a mechanism for coordinated gene expression that may be used in organisms other than Plasmodium, including humans.


Subject(s)
Malaria, Falciparum , Malaria , Parasites , Animals , Humans , Malaria, Falciparum/parasitology , Plasmodium falciparum , Protozoan Proteins/metabolism , Antigenic Variation/genetics , Antigens
4.
Front Cell Dev Biol ; 10: 852239, 2022.
Article in English | MEDLINE | ID: mdl-35350381

ABSTRACT

Cellular decision-making at the level of gene expression is a key process in the development and evolution of every organism. Variations in gene expression can lead to phenotypic diversity and the development of subpopulations with adaptive advantages. A prime example is the mutually exclusive activation of a single gene from within a multicopy gene family. In mammals, this ranges from the activation of one of the two immunoglobulin (Ig) alleles to the choice in olfactory sensory neurons of a single odorant receptor (OR) gene from a family of more than 1,000. Similarly, in parasites like Trypanosoma brucei, Giardia lamblia or Plasmodium falciparum, the process of antigenic variation required to escape recognition by the host immune system involves the monoallelic expression of vsg, vsp or var genes, respectively. Despite the importance of this process, understanding how this choice is made remains an enigma. The development of powerful techniques such as single cell RNA-seq and Hi-C has provided new insights into the mechanisms these different systems employ to achieve monoallelic gene expression. Studies utilizing these techniques have shown how the complex interplay between nuclear architecture, physical interactions between chromosomes and different chromatin states lead to single allele expression. Additionally, in several instances it has been observed that high-level expression of a single gene is preceded by a transient state where multiple genes are expressed at a low level. In this review, we will describe and compare the different strategies that organisms have evolved to choose one gene from within a large family and how parasites employ this strategy to ensure survival within their hosts.

5.
J Med Chem ; 62(13): 6137-6145, 2019 07 11.
Article in English | MEDLINE | ID: mdl-31177777

ABSTRACT

The Plasmodium proteasome (Pf20S) emerged as a target for antimalarials. Pf20S inhibitors are active at multiple stages of the parasite life cycle and synergize with artemisinins, suggesting that Pf20S inhibitors have potential to be prophylactic, therapeutic, and transmission blocking as well as are useful for combination therapy. We recently reported asparagine ethylenediamines (AsnEDAs) as immunoproteasome inhibitors and modified AsnEDAs as selective Pf20S inhibitors. Here, we report further a structure-activity relationship study of AsnEDAs for selective inhibition of Pf20S over human proteasomes. Additionally, we show new mutation that conferred resistance to AsnEDAs and collateral sensitivity to an inhibitor of the Pf20S ß2 subunit, the same as previously identified resistant mutation. This resistance could be overcome through the use of the structure-guided inhibitor design. Collateral sensitivity to inhibitors among respective proteasome subunits underscores the potential value of treating malaria with combinations of inhibitors of different proteasome subunits to minimize the emergence of drug resistance.


Subject(s)
Antimalarials/pharmacology , Malaria, Falciparum/prevention & control , Plasmodium falciparum/drug effects , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/pharmacology , Antimalarials/chemistry , Antimalarials/metabolism , Asparagine/chemistry , Asparagine/metabolism , Drug Resistance/drug effects , Drug Resistance/genetics , Ethylenediamines/chemistry , Ethylenediamines/metabolism , Humans , Malaria, Falciparum/metabolism , Malaria, Falciparum/parasitology , Mutation , Plasmodium falciparum/genetics , Plasmodium falciparum/physiology , Proteasome Endopeptidase Complex/genetics
6.
Proc Natl Acad Sci U S A ; 115(29): E6863-E6870, 2018 07 17.
Article in English | MEDLINE | ID: mdl-29967165

ABSTRACT

We describe noncovalent, reversible asparagine ethylenediamine (AsnEDA) inhibitors of the Plasmodium falciparum proteasome (Pf20S) ß5 subunit that spare all active subunits of human constitutive and immuno-proteasomes. The compounds are active against erythrocytic, sexual, and liver-stage parasites, against parasites resistant to current antimalarials, and against P. falciparum strains from patients in Africa. The ß5 inhibitors synergize with a ß2 inhibitor in vitro and in mice and with artemisinin. P. falciparum selected for resistance to an AsnEDA ß5 inhibitor surprisingly harbored a point mutation in the noncatalytic ß6 subunit. The ß6 mutant was resistant to the species-selective Pf20S ß5 inhibitor but remained sensitive to the species-nonselective ß5 inhibitors bortezomib and carfilzomib. Moreover, resistance to the Pf20S ß5 inhibitor was accompanied by increased sensitivity to a Pf20S ß2 inhibitor. Finally, the ß5 inhibitor-resistant mutant had a fitness cost that was exacerbated by irradiation. Thus, used in combination, multistage-active inhibitors of the Pf20S ß5 and ß2 subunits afford synergistic antimalarial activity with a potential to delay the emergence of resistance to artemisinins and each other.


Subject(s)
Antimalarials/chemistry , Plasmodium falciparum/enzymology , Proteasome Endopeptidase Complex/chemistry , Proteasome Inhibitors/chemistry , Protozoan Proteins/antagonists & inhibitors , Artemisinins/chemistry , Bortezomib/chemistry , Drug Resistance, Microbial , Humans , Lactones/chemistry , Oligopeptides/chemistry , Protozoan Proteins/chemistry
7.
Clin Infect Dis ; 65(7): 1222-1225, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28541469

ABSTRACT

Babesiosis treatment failures with standard therapy have been reported, but the molecular mechanisms are not well understood. We describe the emergence of atovaquone and azithromycin resistance associated with mutations in the binding regions of the target proteins of both drugs during treatment of an immunosuppressed patient with relapsing babesiosis.


Subject(s)
Antiprotozoal Agents/therapeutic use , Atovaquone/therapeutic use , Azithromycin/therapeutic use , Babesiosis/drug therapy , Drug Resistance/drug effects , Leukemia, Lymphocytic, Chronic, B-Cell/parasitology , Rituximab/therapeutic use , Aged, 80 and over , Amino Acid Sequence , Babesia microti/drug effects , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...