Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Funct Plant Biol ; 51(1): NULL, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37814289

ABSTRACT

Floods and droughts are becoming more frequent as a result of climate change and it is imperative to find ways to enhance the resilience of staple crops to abiotic stresses. This is crucial to sustain food production during unfavourable conditions. Here, we analyse the current knowledge about suberised and lignified outer apoplastic barriers, focusing on the functional roles of the barrier to radial O2 loss formed as a response to soil flooding and we discuss whether this trait also provides resilience to multiple abiotic stresses. The barrier is composed of suberin and lignin depositions in the exodermal and/or sclerenchyma cell walls. In addition to the important role during soil flooding, the barrier can also restrict radial water loss, prevent phytotoxin intrusion, salt intrusion and the main components of the barrier can impede invasion of pathogens in the root. However, more research is needed to fully unravel the induction pathway of the outer apoplastic barriers and to address potential trade-offs such as reduced nutrient or water uptake. Nevertheless, we suggest that the outer apoplastic barriers might act as a jack of all trades providing tolerance to multiple abiotic and/or biotic stressors.


Subject(s)
Plant Roots , Water , Plant Roots/metabolism , Biological Transport , Water/metabolism , Stress, Physiological , Soil
2.
Ann Bot ; 130(3): 383-392, 2022 09 19.
Article in English | MEDLINE | ID: mdl-35259242

ABSTRACT

BACKGROUND AND AIMS: While trait-based approaches have provided critical insights into general plant functioning, we lack a comprehensive quantitative view on plant strategies in flooded conditions. Plants adapted to flooded conditions have specific traits (e.g. root porosity, low root/shoot ratio and shoot elongation) to cope with the environmental stressors including anoxic sediments, and the subsequent presence of phytotoxic compounds. In flooded habitats, plants also respond to potential nutrient and light limitations, e.g. through the expression of leaf economics traits and size-related traits, respectively. However, we do not know whether and how these trait dimensions are connected. METHODS: Based on a trait dataset compiled on 131 plant species from 141 studies in flooded habitats, we quantitatively analysed how flooding-induced traits are positioned in relation to the other two dominant trait dimensions: leaf economics traits and size-related traits. We evaluated how these key trait components are expressed along wetness gradients, across habitat types and among plant life forms. KEY RESULTS: We found that flooding-induced traits constitute a trait dimension independent from leaf economics traits and size-related traits, indicating that there is no generic trade-off associated with flooding adaptations. Moreover, individual flooding-induced traits themselves are to a large extent decoupled from each other. These results suggest that adaptation to stressful environments, such as flooding, can be stressor specific without generic adverse effects on plant functioning (e.g. causing trade-offs on leaf economics traits). CONCLUSIONS: The trait expression across multiple dimensions promotes plant adaptations and coexistence across multifaceted flooded environments. The decoupled trait dimensions, as related to different environmental drivers, also explain why ecosystem functioning (including, for example, methane emissions) are species and habitat specific. Thus, our results provide a backbone for applying trait-based approaches in wetland ecology by considering flooding-induced traits as an independent trait dimension.


Subject(s)
Ecosystem , Floods , Methane , Plant Leaves , Plant Physiological Phenomena , Plants/genetics
3.
Mol Ecol Resour ; 21(4): 1021-1036, 2021 May.
Article in English | MEDLINE | ID: mdl-33058506

ABSTRACT

Plant interactions are as important belowground as aboveground. Belowground plant interactions are however inherently difficult to quantify, as roots of different species are difficult to disentangle. Although for a couple of decades molecular techniques have been successfully applied to quantify root abundance, root identification and quantification in multispecies plant communities remains particularly challenging. Here we present a novel methodology, multispecies genotyping by sequencing (msGBS), as a next step to tackle this challenge. First, a multispecies meta-reference database containing thousands of gDNA clusters per species is created from GBS derived High Throughput Sequencing (HTS) reads. Second, GBS derived HTS reads from multispecies root samples are mapped to this meta-reference which, after a filter procedure to increase the taxonomic resolution, allows the parallel quantification of multiple species. The msGBS signal of 111 mock-mixture root samples, with up to 8 plant species per sample, was used to calculate the within-species abundance. Optional subsequent calibration yielded the across-species abundance. The within- and across-species abundances highly correlated (R2 range 0.72-0.94 and 0.85-0.98, respectively) to the biomass-based species abundance. Compared to a qPCR based method which was previously used to analyse the same set of samples, msGBS provided similar results. Additional data on 11 congener species groups within 105 natural field root samples showed high taxonomic resolution of the method. msGBS is highly scalable in terms of sensitivity and species numbers within samples, which is a major advantage compared to the qPCR method and advances our tools to reveal hidden belowground interactions.


Subject(s)
Biodiversity , High-Throughput Nucleotide Sequencing/methods , Plants , Biomass , Genotyping Techniques , Plant Roots/genetics , Plants/classification
4.
Nat Commun ; 11(1): 4519, 2020 09 09.
Article in English | MEDLINE | ID: mdl-32908150

ABSTRACT

The leaf economics spectrum (LES) describes consistent correlations among a variety of leaf traits that reflect a gradient from conservative to acquisitive plant strategies. So far, whether the LES holds in wetland plants at a global scale has been unclear. Using data on 365 wetland species from 151 studies, we find that wetland plants in general show a shift within trait space along the same common slope as observed in non-wetland plants, with lower leaf mass per area, higher leaf nitrogen and phosphorus, faster photosynthetic rates, and shorter leaf life span compared to non-wetland plants. We conclude that wetland plants tend to cluster at the acquisitive end of the LES. The presented global quantifications of the LES in wetland plants enhance our understanding of wetland plant strategies in terms of resources acquisition and allocation, and provide a stepping-stone to developing trait-based approaches for wetland ecology.


Subject(s)
Photosynthesis/genetics , Plant Leaves/genetics , Plants/genetics , Wetlands , Nitrogen/analysis , Phosphorus/analysis , Plant Leaves/anatomy & histology , Plant Leaves/chemistry , Plants/anatomy & histology , Plants/metabolism
5.
Nat Commun ; 10(1): 4020, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31488841

ABSTRACT

Timely perception of adverse environmental changes is critical for survival. Dynamic changes in gases are important cues for plants to sense environmental perturbations, such as submergence. In Arabidopsis thaliana, changes in oxygen and nitric oxide (NO) control the stability of ERFVII transcription factors. ERFVII proteolysis is regulated by the N-degron pathway and mediates adaptation to flooding-induced hypoxia. However, how plants detect and transduce early submergence signals remains elusive. Here we show that plants can rapidly detect submergence through passive ethylene entrapment and use this signal to pre-adapt to impending hypoxia. Ethylene can enhance ERFVII stability prior to hypoxia by increasing the NO-scavenger PHYTOGLOBIN1. This ethylene-mediated NO depletion and consequent ERFVII accumulation pre-adapts plants to survive subsequent hypoxia. Our results reveal the biological link between three gaseous signals for the regulation of flooding survival and identifies key regulatory targets for early stress perception that could be pivotal for developing flood-tolerant crops.


Subject(s)
Arabidopsis/metabolism , Ethylenes/metabolism , Ethylenes/pharmacology , Hypoxia , Nitric Oxide/metabolism , Stress, Physiological/physiology , Acclimatization/genetics , Acclimatization/physiology , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Floods , Gene Expression Regulation, Plant/drug effects , Hemoglobins/metabolism , Oxygen/metabolism , Proteolysis , Stress, Physiological/drug effects , Stress, Physiological/genetics , Transcription Factors/metabolism
6.
Oecologia ; 191(1): 177-190, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31401664

ABSTRACT

Global climate models predict more frequent periods of drought stress alternated by heavier, but fewer rainfall events in the future. Biodiversity studies have shown that such changed drought stress may be mitigated by plant species richness. Here, we investigate if grassland communities, differing in species richness, respond differently to climatic extremes within the growing season. In a 3-year outdoor mesocosm experiment, four grassland species in both monoculture and mixture were subjected to a rainfall distribution regime with two levels: periods of severe drought in the summer intermitted by extreme rainfall events versus regular rainfall over time. Both treatments received the same amount of water over the season. Extreme rainfall combined with drought periods resulted in a 15% decrease in aboveground biomass in the second and third year, compared to the regular rainfall regime. Root biomass was also reduced in the extreme rainfall treatment, particularly in the top soil layer (- 40%). All species developed higher water use efficiencies (less negative leaf δ13C) in extreme rainfall than in regular rainfall. These responses to the rainfall/drought treatment were independent of species richness, although the mixtures were on an average more productive in terms of biomass than the monocultures. Our experimental results suggest that mixtures are similarly able to buffer these within-season rainfall extremes than monocultures, which contrasts with findings in the studies on natural droughts. Our work demonstrates the importance of investigating the interactions between rainfall distribution and drought periods for understanding effects of climate change on plant community performance.


Subject(s)
Droughts , Grassland , Biodiversity , Biomass , Climate Change , Plants
7.
Glob Chang Biol ; 25(4): 1358-1367, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30638293

ABSTRACT

Climate change will have large consequences for flooding frequencies in freshwater systems. In interaction with anthropogenic activities (flow regulation, channel restoration and catchment land-use) this will both increase flooding and drought across the world. Like in many other ecosystems facing changed environmental conditions, it remains difficult to predict the rate and trajectory of vegetation responses to changed conditions. Given that critical ecosystem services (e.g. bank stabilization, carbon subsidies to aquatic communities or water purification) depend on riparian vegetation composition, it is important to understand how and how fast riparian vegetation responds to changing flooding regimes. We studied vegetation changes over 19 growing seasons in turfs that were transplanted in a full-factorial design between three riparian elevations with different flooding frequencies. We found that (a) some transplanted communities may have developed into an alternative stable state and were still different from the target community, and (b) pathways of vegetation change were highly directional but alternative trajectories did occur, (c) changes were rather linear but faster when flooding frequencies increased than when they decreased, and (d) we observed fastest changes in turfs when proxies for mortality and colonization were highest. These results provide rare examples of alternative transient trajectories and stable states under field conditions, which is an important step towards understanding their drivers and their frequency in a changing world.

8.
J Plant Physiol ; 224-225: 11-18, 2018.
Article in English | MEDLINE | ID: mdl-29574325

ABSTRACT

Flooding negatively affects the growth and even survival of most terrestrial plants. Upon flooding, the excess water quickly decreases the gas exchange between atmosphere and the submerged plant tissues, which leads to oxygen deficiency resulting in a plant cell energy crisis, and eventually plant death. Solanum dulcamara survives flooding by producing aerenchymatous adventitious roots (ARs) from pre-formed primordia on the stem, which replace the original flood-sensitive root system. However, we found that under complete submergence, AR outgrowth was impaired in S. dulcamara. In the present work, we tried to elucidate the mechanisms behind this phenomenon in particular the involvement of the phytohormones auxin, abscisic acid and jasmonic acid. Abscisic acid (ABA) is a negative regulator of AR outgrowth, but surprisingly the ABA content and signaling were decreased to a similar extent under both partial and complete submergence, suggesting that ABA might not be responsible for the difference in AR outgrowth. Auxin, which is necessary for AR outgrowth, was at similar concentrations in either partially or completely submerged primordia, but complete submergence resulted in a decrease of auxin signaling in the primordia. Application of 1-naphthaleneacetic acid (NAA) to completely submerged plants restored AR outgrowth, implying that auxin response in the rooting tissues of completely submerged plants was reduced. Furthermore, jasmonic acid (JA) concentrations did not differ between partial and complete submergence. To conclude, a disruption in the auxin signaling within S. dulcamara AR primordia may result in the abortion of AR outgrowth under complete submergence.


Subject(s)
Abscisic Acid/metabolism , Cyclopentanes/metabolism , Indoleacetic Acids/metabolism , Oxylipins/metabolism , Plant Growth Regulators/metabolism , Signal Transduction , Solanum/physiology , Immersion , Plant Roots/growth & development , Plant Roots/physiology , Plant Stems/growth & development , Plant Stems/physiology , Solanum/growth & development
9.
Ann Bot ; 120(1): 171-180, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28586427

ABSTRACT

Background and Aims: Temporal flooding is a common environmental stress for terrestrial plants. Aquatic adventitious roots (aquatic roots) are commonly formed in flooding-tolerant plant species and are generally assumed to be beneficial for plant growth by supporting water and nutrient uptake during partial flooding. However, the actual contribution of these roots to plant performance under flooding has hardly been quantified. As the investment into aquatic root development in terms of carbohydrates may be costly, these costs may - depending on the specific environmental conditions - offset the beneficial effects of aquatic roots. This study tested the hypothesis that the balance between potential costs and benefits depends on the duration of flooding, as the benefits are expected to outweigh the costs in long-term but not in short-term flooding. Methods: The contribution of aquatic roots to plant performance was tested in Solanum dulcamara during 1-4 weeks of partial submergence and by experimentally manipulating root production. Nutrient uptake by aquatic roots, transpiration and photosynthesis were measured in plants differing in aquatic root development to assess the specific function of these roots. Key Results: As predicted, flooded plants benefited from the presence of aquatic roots. The results showed that this was probably due to the contribution of roots to resource uptake. However, these beneficial effects were only present in long-term but not in short-term flooding. This relationship could be explained by the correlation between nutrient uptake and the flooding duration-dependent size of the aquatic root system. Conclusions: The results indicate that aquatic root formation is likely to be selected for in habitats characterized by long-term flooding. This study also revealed only limited costs associated with adventitious root formation, which may explain the maintenance of the ability to produce aquatic roots in habitats characterized by very rare or short flooding events.


Subject(s)
Floods , Plant Roots/physiology , Solanum/physiology , Water/physiology , Ecosystem , Photosynthesis , Plant Transpiration
11.
Funct Plant Biol ; 44(9): 858-866, 2017 Sep.
Article in English | MEDLINE | ID: mdl-32480614

ABSTRACT

Flooding is a compound stress, imposing strong limitations on plant development. The expression of adaptive traits that alleviate flooding stress may be constrained if floodwater levels are too deep. For instance, adventitious root outgrowth is typically less profound in completely submerged plants than in partially submerged plants, suggesting additional constraints in full submergence. As both oxygen and carbohydrates are typically limited resources under submergence, we tested the effects of oxygen concentration in the floodwater and carbohydrate status of the plants on flooding-induced adventitious root formation in Solanum dulcamara L. Partially submerged plants continued to form adventitious roots in low-oxygen floodwater, whereas completely submerged plants developed hardly any roots, even in floodwater with twice the ambient oxygen concentration. This suggests that contact with the atmosphere, enabling internal aeration, is much more important to optimal adventitious root formation than floodwater oxygen concentrations. If plants were depleted of carbohydrates before flooding, adventitious root formation in partial submergence was poor, unless high light was provided. Thus, either stored or newly produced carbohydrates can fuel adventitious root formation. These results imply that the impact of an environmental stress factor like flooding on plant performance may strongly depend on the interplay with other environmental factors.

12.
New Phytol ; 213(2): 645-656, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27717024

ABSTRACT

Flooding is expected to increase in frequency and severity in the future. The ecological consequences of flooding are the combined result of species-specific plant traits and ecological context. However, the majority of past flooding research has focused on individual model species under highly controlled conditions. An early summer flooding event in a grassland biodiversity experiment in Jena, Germany, provided the opportunity to assess flooding responses of 60 grassland species in monocultures and 16-species mixtures. We examined plant biomass, species-specific traits (plant height, specific leaf area (SLA), root aerenchyma, starch content) and soil porosity. We found that, on average, plant species were less negatively affected by the flood when grown in higher-diversity plots in July 2013. By September 2013, grasses were unaffected by the flood regardless of plant diversity, and legumes were severely negatively affected regardless of plant diversity. Plants with greater SLA and more root aerenchyma performed better in September. Soil porosity was higher in higher-diversity plots and had a positive effect on plant performance. As floods become more frequent and severe in the future, growing flood-sensitive plants in higher-diversity communities and in soil with greater soil aeration may attenuate the most negative effects of flooding.


Subject(s)
Floods , Plant Development , Biomass , Plant Leaves/anatomy & histology , Porosity , Quantitative Trait, Heritable , Soil , Species Specificity
13.
New Phytol ; 211(4): 1159-69, 2016 09.
Article in English | MEDLINE | ID: mdl-27174359

ABSTRACT

Contents 1159 I. 1159 II. 1161 III. 1164 IV. 1166 1167 References 1167 SUMMARY: The search for a root economics spectrum (RES) has been sparked by recent interest in trait-based plant ecology. By analogy with the one-dimensional leaf economics spectrum (LES), fine-root traits are hypothesised to match leaf traits which are coordinated along one axis from resource acquisitive to conservative traits. However, our literature review and meta-level analysis reveal no consistent evidence of an RES mirroring an LES. Instead the RES appears to be multidimensional. We discuss three fundamental differences contributing to the discrepancy between these spectra. First, root traits are simultaneously constrained by various environmental drivers not necessarily related to resource uptake. Second, above- and belowground traits cannot be considered analogues, because they function differently and might not be related to resource uptake in a similar manner. Third, mycorrhizal interactions may offset selection for an RES. Understanding and explaining the belowground mechanisms and trade-offs that drive variation in root traits, resource acquisition and plant performance across species, thus requires a fundamentally different approach than applied aboveground. We therefore call for studies that can functionally incorporate the root traits involved in resource uptake, the complex soil environment and the various soil resource uptake mechanisms - particularly the mycorrhizal pathway - in a multidimensional root trait framework.


Subject(s)
Plant Roots/physiology , Quantitative Trait, Heritable , Trees/physiology , Mycorrhizae/physiology , Plant Leaves/physiology
14.
Plant Cell Environ ; 39(7): 1537-48, 2016 07.
Article in English | MEDLINE | ID: mdl-26846194

ABSTRACT

Traits for survival during flooding of terrestrial plants include stimulation or inhibition of shoot elongation, aerenchyma formation and efficient gas exchange. Leaf gas films form on superhydrophobic cuticles during submergence and enhance underwater gas exchange. The main hypothesis tested was that the presence of leaf gas films influences the distribution of plant species along a natural flood gradient. We conducted laboratory experiments and field observations on species distributed along a natural flood gradient. We measured presence or absence of leaf gas films and specific leaf area of 95 species. We also measured, gas film retention time during submergence and underwater net photosynthesis and dark respiration of 25 target species. The presence of a leaf gas film was inversely correlated to flood frequency and duration and reached a maximum value of 80% of the species in the rarely flooded locations. This relationship was primarily driven by grasses that all, independently of their field location along the flood gradient, possess gas films when submerged. Although the present study and earlier experiments have shown that leaf gas films enhance gas exchange of submerged plants, the ability of species to form leaf gas films did not show the hypothesized relationship with species composition along the flood gradient.


Subject(s)
Ecosystem , Floods , Gases/metabolism , Plant Leaves/metabolism , Cell Respiration , Netherlands , Photosynthesis , Rivers
15.
Plant Physiol ; 170(4): 2351-64, 2016 04.
Article in English | MEDLINE | ID: mdl-26850278

ABSTRACT

Soil flooding is a common stress factor affecting plants. To sustain root function in the hypoxic environment, flooding-tolerant plants may form new, aerenchymatous adventitious roots (ARs), originating from preformed, dormant primordia on the stem. We investigated the signaling pathway behind AR primordium reactivation in the dicot species Solanum dulcamara Transcriptome analysis indicated that flooding imposes a state of quiescence on the stem tissue, while increasing cellular activity in the AR primordia. Flooding led to ethylene accumulation in the lower stem region and subsequently to a drop in abscisic acid (ABA) level in both stem and AR primordia tissue. Whereas ABA treatment prevented activation of AR primordia by flooding, inhibition of ABA synthesis was sufficient to activate them in absence of flooding. Together, this reveals that there is a highly tissue-specific response to reduced ABA levels. The central role for ABA in the response differentiates the pathway identified here from the AR emergence pathway known from rice (Oryza sativa). Flooding and ethylene treatment also induced expression of the polar auxin transporter PIN2, and silencing of this gene or chemical inhibition of auxin transport inhibited primordium activation, even though ABA levels were reduced. Auxin treatment, however, was not sufficient for AR emergence, indicating that the auxin pathway acts in parallel with the requirement for ABA reduction. In conclusion, adaptation of S. dulcamara to wet habitats involved co-option of a hormonal signaling cascade well known to regulate shoot growth responses, to direct a root developmental program upon soil flooding.


Subject(s)
Floods , Plant Growth Regulators/metabolism , Plant Roots/metabolism , Solanum/metabolism , Abscisic Acid/metabolism , Biological Transport/drug effects , Ethylenes/pharmacology , Gene Expression Regulation, Plant/drug effects , Indoleacetic Acids/metabolism , Organ Specificity/drug effects , Organ Specificity/genetics , Plant Proteins/metabolism , Plant Roots/drug effects , Signal Transduction/drug effects , Solanum/drug effects , Transcriptome/drug effects , Transcriptome/genetics
16.
Plant Cell Environ ; 39(7): 1485-99, 2016 07.
Article in English | MEDLINE | ID: mdl-26759219

ABSTRACT

In the field, biotic and abiotic stresses frequently co-occur. As a consequence, common molecular signalling pathways governing adaptive responses to individual stresses can interact, resulting in compromised phenotypes. How plant signalling pathways interact under combined stresses is poorly understood. To assess this, we studied the consequence of drought and soil flooding on resistance of Solanum dulcamara to Spodoptera exigua and their effects on hormonal and transcriptomic profiles. The results showed that S. exigua larvae performed less well on drought-stressed plants than on well-watered and flooded plants. Both drought and insect feeding increased abscisic acid and jasmonic acid (JA) levels, whereas flooding did not induce JA accumulation. RNA sequencing analyses corroborated this pattern: drought and herbivory induced many biological processes that were repressed by flooding. When applied in combination, drought and herbivory had an additive effect on specific processes involved in secondary metabolism and defence responses, including protease inhibitor activity. In conclusion, drought and flooding have distinct effects on herbivore-induced responses and resistance. Especially, the interaction between abscisic acid and JA signalling may be important to optimize plant responses to combined drought and insect herbivory, making drought-stressed plants more resistant to insects than well-watered and flooded plants.


Subject(s)
Droughts , Floods , Herbivory , Solanum/metabolism , Stress, Physiological , Abscisic Acid/metabolism , Animals , Cyclopentanes/metabolism , Ethylenes/metabolism , Insecta , Oxylipins/metabolism , Plant Growth Regulators/metabolism
18.
Ann Bot ; 116(2): 279-90, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26105188

ABSTRACT

BACKGROUND AND AIMS: Flooding can occur at any stage of the life cycle of a plant, but often adaptive responses of plants are only studied at a single developmental stage. It may be anticipated that juvenile plants may respond differently from mature plants, as the amount of stored resources may differ and morphological changes can be constrained. Moreover, different water depths may require different strategies to cope with the flooding stress, the expression of which may also depend on developmental stage. This study investigated whether flooding-induced adventitious root formation and plant growth were affected by flooding depth in Solanum dulcamara plants at different developmental stages. METHODS: Juvenile plants without pre-formed adventitious root primordia and mature plants with primordia were subjected to shallow flooding or deep flooding for 5 weeks. Plant growth and the timing of adventitious root formation were monitored during the flooding treatments. KEY RESULTS: Adventitious root formation in response to shallow flooding was significantly constrained in juvenile S. dulcamara plants compared with mature plants, and was delayed by deep flooding compared with shallow flooding. Complete submergence suppressed adventitious root formation until up to 2 weeks after shoots restored contact with the atmosphere. Independent of developmental stage, a strong positive correlation was found between adventitious root formation and total biomass accumulation during shallow flooding. CONCLUSIONS: The potential to deploy an escape strategy (i.e. adventitious root formation) may change throughout a plant's life cycle, and is largely dependent on flooding depth. Adaptive responses at a given stage of the life cycle thus do not necessarily predict how the plant responds to flooding in another growth stage. As variation in adventitious root formation also correlates with finally attained biomass, this variation may form the basis for variation in resistance to shallow flooding among plants.


Subject(s)
Floods , Plant Roots/growth & development , Solanum/growth & development , Water , Analysis of Variance , Biomass , Ecosystem , Light , Plant Roots/anatomy & histology , Plant Roots/radiation effects , Plant Shoots/anatomy & histology , Plant Shoots/physiology , Plant Shoots/radiation effects , Plant Stems/anatomy & histology , Plant Stems/physiology , Solanum/anatomy & histology , Solanum/physiology , Solanum/radiation effects
19.
J Exp Bot ; 66(18): 5507-17, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26105997

ABSTRACT

The plant's root system is highly plastic, and can respond to environmental stimuli such as high nitrogen (N) in patches. A root may respond to an N patch by selective placement of new lateral roots, and therewith increases root N uptake. This may be a desirable trait in breeding programmes, since it decreases NO3(-) leaching and N2O emission. Roots of maize (Zea mays L.) were grown without N in split-nutrient rhizoslides. One side of the slides was exposed to high N after 15 d of root development, and root elongation was measured for another 15 d, described in a time course model and parameterized. The elongation rates of crown axile roots on the N-treated side of the plant followed a logistic increase to a maximum of 5.3cm d(-1); 95% of the maximum were reached within 4 d. At the same time, on the untreated side, axile root elongation dropped linearly to 1.2cm d(-1) within 6.4 d and stayed constant thereafter. Twice as many lateral roots were formed on the crown axis on the N side compared to the untreated side. Most strikingly, the elongation rates of laterals of the N side increased linearly with most of the roots reaching an asymptote ~8 d after start of the N treatment. By contrast, laterals on the side without N did not show any detectable elongation beyond the first day after their emergence. We conclude that split-nutrient rhizoslides have great potential to improve our knowledge about nitrogen responsiveness and selection for contrasting genotypes.


Subject(s)
Nitrogen/metabolism , Zea mays/growth & development , Zea mays/metabolism , Models, Biological , Phenotype , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Zea mays/genetics
20.
Front Plant Sci ; 6: 273, 2015.
Article in English | MEDLINE | ID: mdl-25964790

ABSTRACT

Although plastic root-foraging responses are thought to be adaptive, as they may optimize nutrient capture of plants, this has rarely been tested. We investigated whether nutrient-foraging responses are adaptive, and whether they pre-adapt alien species to become natural-area invaders. We grew 12 pairs of congeneric species (i.e., 24 species) native to Europe in heterogeneous and homogeneous nutrient environments, and compared their foraging responses and performance. One species in each pair is a USA natural-area invader, and the other one is not. Within species, individuals with strong foraging responses, measured as plasticity in root diameter and specific root length, had a higher biomass. Among species, the ones with strong foraging responses, measured as plasticity in root length and root biomass, had a higher biomass. Our results therefore suggest that root foraging is an adaptive trait. Invasive species showed significantly stronger root-foraging responses than non-invasive species when measured as root diameter. Biomass accumulation was decreased in the heterogeneous vs. the homogeneous environment. In aboveground, but not belowground and total biomass, this decrease was smaller in invasive than in non-invasive species. Our results show that strong plastic root-foraging responses are adaptive, and suggest that it might aid in pre-adapting species to becoming natural-area invaders.

SELECTION OF CITATIONS
SEARCH DETAIL
...