Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Biotechnol Biofuels ; 9: 63, 2016.
Article in English | MEDLINE | ID: mdl-26981155

ABSTRACT

BACKGROUND: Despite the recognition that feedstock composition influences biomass conversion efficiency, limited information exists as to how bioenergy crops with reduced recalcitrance can improve the economics and sustainability of cellulosic fuel conversion platforms. We have compared the bioenergy potential-estimated as total glucose productivity per hectare (TGP)-of maize cultivars contrasting for cell wall digestibility across processing conditions of increasing thermochemical severity. In addition, exploratory environmental impact and economic modeling were used to assess whether the development of bioenergy feedstocks with improved cell wall digestibility can enhance the environmental performance and reduce the costs of biomass pretreatment and enzymatic conversion. RESULTS: Systematic genetic gains in cell wall degradability can lead to significant advances in the productivity (TGP) of cellulosic fuel biorefineries under low severity processing; only if gains in digestibility are not accompanied by substantial yield penalties. For a hypothetical maize genotype combining the best characteristics available in the evaluated cultivar panel, TGP under mild processing conditions (~3.7 t ha(-1)) matched the highest realizable yields possible at the highest processing severity. Under this scenario, both, the environmental impacts and processing costs for the pretreatment and enzymatic saccharification of maize stover were reduced by 15 %, given lower chemical and heat consumption. CONCLUSIONS: Genetic improvements in cell wall composition leading to superior cell wall digestibility can be advantageous for cellulosic fuel production, especially if "less severe" processing regimes are favored for further development. Exploratory results indicate potential cost and environmental impact reductions for the pretreatment and enzymatic saccharification of maize feedstocks exhibiting higher cell wall degradability. Conceptually, these results demonstrate that the advance of bioenergy cultivars with improved biomass degradability can enhance the performance of currently available biomass-to-ethanol conversion systems.

2.
BMC Evol Biol ; 13: 175, 2013 Aug 24.
Article in English | MEDLINE | ID: mdl-23972016

ABSTRACT

BACKGROUND: The Galapagos Islands constitute a highly diverse ecosystem and a unique source of variation in the form of endemic species. There are two endemic tomato species, Solanum galapagense and S. cheesmaniae and two introduced tomato species, S. pimpinellifolium and S. lycopersicum. Morphologically the two endemic tomato species of the Galapagos Islands are clearly distinct, but molecular marker analysis showed no clear separation. Tomatoes on the Galapagos are affected by both native and exotic herbivores. Bemisia tabaci is an important introduced insect species that feeds on a wide range of plants. In this article, we address the question whether the differentiation between S. galapagense and S. cheesmaniae may be related to differences in susceptibility towards phloem-feeders and used B. tabaci as a model to evaluate this. RESULTS: We have characterized 12 accessions of S. galapagense, 22 of S. cheesmaniae, and one of S. lycopersicum as reference for whitefly resistance using no-choice experiments. Whitefly resistance was found in S. galapagense only and was associated with the presence of relatively high levels of acyl sugars and the presence of glandular trichomes of type I and IV. Genetic fingerprinting using 3316 SNP markers did not show a clear differentiation between the two endemic species. Acyl sugar accumulation as well as the climatic and geographical conditions at the collection sites of the accessions did not follow the morphological species boundaries. CONCLUSION: Our results suggest that S. galapagense and S. cheesmaniae might be morphotypes rather than two species and that their co-existence is likely the result of selective pressure.


Subject(s)
Hemiptera , Herbivory , Solanum lycopersicum/classification , Solanum lycopersicum/genetics , Animals , Ecuador , Solanum lycopersicum/physiology , Solanum/genetics
3.
Nature ; 495(7440): 246-50, 2013 Mar 14.
Article in English | MEDLINE | ID: mdl-23467094

ABSTRACT

Potato (Solanum tuberosum L.) originates from the Andes and evolved short-day-dependent tuber formation as a vegetative propagation strategy. Here we describe the identification of a central regulator underlying a major-effect quantitative trait locus for plant maturity and initiation of tuber development. We show that this gene belongs to the family of DOF (DNA-binding with one finger) transcription factors and regulates tuberization and plant life cycle length, by acting as a mediator between the circadian clock and the StSP6A mobile tuberization signal. We also show that natural allelic variants evade post-translational light regulation, allowing cultivation outside the geographical centre of origin of potato. Potato is a member of the Solanaceae family and is one of the world's most important food crops. This annual plant originates from the Andean regions of South America. Potato develops tubers from underground stems called stolons. Its equatorial origin makes potato essentially short-day dependent for tuberization and potato will not make tubers in the long-day conditions of spring and summer in the northern latitudes. When introduced in temperate zones, wild material will form tubers in the course of the autumnal shortening of day-length. Thus, one of the first selected traits in potato leading to a European potato type is likely to have been long-day acclimation for tuberization. Potato breeders can exploit the naturally occurring variation in tuberization onset and life cycle length, allowing varietal breeding for different latitudes, harvest times and markets.


Subject(s)
Agriculture , Alleles , Genetic Variation/genetics , Solanum tuberosum/growth & development , Solanum tuberosum/genetics , Acclimatization , Arabidopsis , Chromosomes, Plant/genetics , Circadian Clocks/physiology , Circadian Clocks/radiation effects , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Crops, Agricultural/radiation effects , Europe , Flowers/genetics , Flowers/growth & development , Gene Expression Regulation, Plant , Genes, Plant/genetics , Light , Molecular Sequence Data , Plant Leaves/metabolism , Plant Leaves/radiation effects , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Tubers/genetics , Plant Tubers/growth & development , Plant Tubers/radiation effects , Solanum tuberosum/radiation effects , South America , Time Factors
4.
Plant Dis ; 97(6): 819-827, 2013 Jun.
Article in English | MEDLINE | ID: mdl-30722604

ABSTRACT

Anthracnose is a serious problem of both Andean lupine and tamarillo in Ecuador. Morphological features, internal transcribed spacer (ITS) sequences, and host specificity were used to characterize Colletotrichum isolates from lupine and tamarillo. Based on phenotypic and molecular characterization, the causal agent of anthracnose on both hosts was Colletotrichum acutatum. All isolates were identified in a C. acutatum-specific polymerase chain reaction assay. Colony diameter, conidia shape, and insensitivity to benomyl also placed isolates from both hosts in the C. acutatum group. However, a detailed analysis of the ITS sequences placed the lupine and tamarillo isolates from the Ecuadorian Andean zone in two clades, with both lupine and tamarillo isolates in each clade. C. acutatum isolates from Andean lupine were distinct from other C. acutatum isolates on lupine around the world. In cross-infection studies, the diameter of lesions produced by isolates from each host was compared on the main stem of two tamarillo and three lupine cultivars. Some isolates produced larger lesions on the host from which they were isolated but others showed similar aggressiveness on their alternate host. Isolates from both hosts were biotrophic on lupine stems, producing little necrosis and abundant sporulation whereas, on tamarillo stems, they produced dark lesions with few conidia. The collection of C. acutatum isolates from lupine and tamarillo provides interesting material for the study quantitative host adaptation.

5.
Plant J ; 68(6): 1093-103, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21883550

ABSTRACT

Tomato yellow leaf curl disease, a devastating disease of Solanum lycopersicum (tomato), is caused by a complex of begomoviruses generally referred to as Tomato yellow leaf curl virus (TYLCV). Almost all breeding for TYLCV resistance has been based on the introgression of the Ty-1 resistance locus derived from Solanum chilense LA1969. Knowledge about the exact location of Ty-1 on tomato chromosome 6 will help in understanding the genomic organization of the Ty-1 locus. In this study, we analyze the chromosomal rearrangement and recombination behavior of the chromosomal region where Ty-1 is introgressed. Nineteen markers on tomato chromosome 6 were used in F(2) populations obtained from two commercial hybrids, and showed the presence of a large introgression in both. Fluorescence in situ hybridization (FISH) analysis revealed two chromosomal rearrangements between S. lycopersicum and S. chilense LA1969 in the Ty-1 introgression. Furthermore, a large-scale recombinant screening in the two F(2) populations was performed, and 30 recombinants in the Ty-1 introgression were identified. All recombination events were located on the long arm beyond the inversions, showing that recombination in the inverted region was absent. Disease tests on progenies of informative recombinants with TYLCV mapped Ty-1 to the long arm between markers MSc05732-4 and MSc05732-14, an interval overlapping with the reported Ty-3 region, which led to the indication that Ty-1 and Ty-3 may be allelic. With this study we prove that FISH can be used as a diagnostic tool to aid in the accurate mapping of genes that were introgressed from wild species into cultivated tomato.


Subject(s)
Begomovirus/genetics , Chromosomes, Plant/genetics , Disease Resistance/genetics , Gene Rearrangement , Genes, Plant , Plant Diseases/genetics , Solanum/genetics , Chromosome Mapping/methods , In Situ Hybridization, Fluorescence , Solanum lycopersicum/genetics , Solanum lycopersicum/virology , Recombination, Genetic , Solanum/virology
6.
Nature ; 432(7014): 222-5, 2004 Nov 11.
Article in English | MEDLINE | ID: mdl-15538370

ABSTRACT

The Nuffield Council on Bioethics suggests that introgression of genetic material into related species in centres of crop biodiversity is an insufficient justification to bar the use of genetically modified crops in the developing world. They consider that a precautionary approach to forgo the possible benefits invokes the fallacy of thinking that doing nothing is itself without risk to the poor. Here we report findings relevant to this and other aspects of environmental biosafety for genetically modified potato in its main centre of biodiversity, the central Andes. We studied genetically modified potato clones that provide resistance to nematodes, principal pests of Andean potato crops. We show that there is no harm to many non-target organisms, but gene flow occurs to wild relatives growing near potato crops. If stable introgression were to result, the fitness of these wild species could be altered. We therefore transformed the male sterile cultivar Revolucion to provide a genetically modified nematode-resistant potato to evaluate the benefits that this provides until the possibility of stable introgression to wild relatives is determined. Thus, scientific progress is possible without compromise to the precautionary principle.


Subject(s)
Biodiversity , Food, Genetically Modified/standards , Pest Control, Biological/standards , Solanum tuberosum/genetics , Transgenes/genetics , Agriculture/methods , Agriculture/standards , Animals , Crosses, Genetic , Humans , Hybridization, Genetic/genetics , Insecta/physiology , Nematoda/physiology , Peru , Phenotype , Plants, Genetically Modified , Pollen/physiology , Polymorphism, Restriction Fragment Length , Risk Assessment , Safety , Seedlings/classification , Seedlings/genetics , Solanum/classification , Solanum/genetics , Solanum tuberosum/classification , Solanum tuberosum/parasitology , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL