Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta ; 740(4): 417-27, 1983 Sep 09.
Article in English | MEDLINE | ID: mdl-6309236

ABSTRACT

Using isolated rat liver mitochondria, which have previously been shown to carry out true replicative DNA synthesis, we have obtained results which are in accord with the presence and functioning of a DNA gyrase in this organelle. The effects of the Escherichia coli DNA gyrase inhibitors, novobiocin, coumermycin, nalidixic acid and oxolinic acid, upon mtDNA replication suggest the involvement of the putative mitochondrial enzyme in various aspects of this process. First, the preferential inhibition of [3H]dATP incorporation into highly supercoiled DNA together with the appearance of labeled, relaxed DNA are consistent with the involvement of a gyrase in the process of generating negative supercoils in mature mtDNA. Second, the overall depression of incorporation of labeled dATP into mtDNA, including the reduction of radioactivity incorporated into replicative intermediates, suggests a 'swivelase' role for the putative gyrase, and this hypothesis is further supported by results obtained on sucrose gradient centrifugation of heat-denatured, D-loop mtDNA. Here, the synthesis of the completed clean circles is inhibited while 9 S initiator strand synthesis is not, suggesting that chain elongation is blocked by the gyrase inhibitors.


Subject(s)
Anti-Bacterial Agents/pharmacology , DNA Replication/drug effects , DNA, Mitochondrial/genetics , Mitochondria, Liver/metabolism , Topoisomerase II Inhibitors , Aminocoumarins , Animals , Coumarins/pharmacology , DNA, Mitochondrial/isolation & purification , DNA, Superhelical/genetics , Escherichia coli/enzymology , Mitochondria, Liver/drug effects , Molecular Weight , Nalidixic Acid/pharmacology , Novobiocin/pharmacology , Oxolinic Acid/pharmacology , Rats
2.
J Biol Chem ; 252(9): 2984-91, 1977 May 10.
Article in English | MEDLINE | ID: mdl-856809

ABSTRACT

Sucrose density gradient fractionation of isolated rat liver mitochondrial DNA ordinarily yields two peaks, one at 39 S, the other at 27 S. However, when these mitochondria are first incubated with a labeled DNA precursor, a labeled peak at about 8 S is also observed. Is this low molecular weight 8 S DNA merely an artifact of contamination or breakdown, or is it a functioning part of the mitochondrial genome? That it is not a nuclear contaminant is shown by: (a) the absence of nuclei or nuclear fragments in active mitochondrial preparations; (b) the insensitivity of 8 S DNA synthesis to treatment of mitochondria with DNase and RNase; (c) the ability of inner membrane preparations to synthesize this DNA; (d) the ability of atractyloside to inhibit incorporation of [3H]dATP into 8 S and 39 S or 27 S DNA equally; (e) the labeling of 8 S DNA (as well as 39 S and 27 S DNA) but not of nuclear DNA after the administration in vivo of [3H]thymidine. The evidence that 8 S DNA is not an artifact resulting from DNA breakdown during mitochondrial incubation or DNA isolation is as follows: (a) 8 S DNA can be isolated from unincubated mitochondrial; (b) 8 S DNA becomes labeled when labeled DNA precursors are administered in vivo; (c) 8 S DNA biosynthesis continues in the complete absence of labeled 39 S or 27 S DNA (whose synthesis is repressed by ethidium bromide), making it unlikely that 8 S DNA is formed from the breakdown of 39 S or 27 S DNA; (d) substitution of milder methods of DNA extraction does not decrease 8 S DNA labeling; moreover, the usual conditions of extraction, when applied to purified 39 S and 27 S DNA, do not generate 8 S DNA, nor does an additional mitochondrial washing cycle; (e) the specific radioactivity of 8 S DNA is higher than that of 39 S or 27 S DNA, making it improbable that the latter forms are precursors of 8 S DNA. Since 8 S DNA is double-stranded, it is not identical to the 7 S fragment of D loop DNA. The hypothesis that the artifactual nicking of those DNA molecules which contain opposing D loops leads to the release of double-stranded fragments was tested. The DNA which was released was predominantly (and probably completely) single-stranded. We conclude that 8 S DNA is probably not an artifact and studies are in progress on its function.


Subject(s)
DNA, Mitochondrial/biosynthesis , Mitochondria, Liver/metabolism , Animals , Atractyloside/pharmacology , Cell Nucleus/metabolism , Centrifugation, Density Gradient , DNA, Mitochondrial/isolation & purification , DNA, Single-Stranded , Ethidium/pharmacology , Female , Hot Temperature , Male , Membranes/drug effects , Membranes/metabolism , Mitochondria, Liver/drug effects , Molecular Weight , Nucleic Acid Denaturation , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...