Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurooncol ; 163(3): 587-595, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37410346

ABSTRACT

PURPOSE: Management of patients with large brain metastases poses a clinical challenge, with poor local control and high risk of adverse radiation events when treated with single-fraction stereotactic radiosurgery (SF-SRS). Hypofractionated SRS (HF-SRS) may be considered, but clinical data remains limited, particularly with Gamma Knife (GK) radiosurgery. We report our experience with GK to deliver mask-based HF-SRS to brain metastases greater than 10 cc in volume and present our control and toxicity outcomes. METHODS: Patients who received hypofractionated GK radiosurgery (HF-GKRS) for the treatment of brain metastases greater than 10 cc between January 2017 and June 2022 were retrospectively identified. Local failure (LF) and adverse radiation events of CTCAE grade 2 or higher (ARE) were identified. Clinical, treatment, and radiological information was collected to identify parameters associated with clinical outcomes. RESULTS: Ninety lesions (in 78 patients) greater than 10 cc were identified. The median gross tumor volume was 16.0 cc (range 10.1-56.0 cc). Prior surgical resection was performed on 49 lesions (54.4%). Six- and 12-month LF rates were 7.3% and 17.6%; comparable ARE rates were 1.9% and 6.5%. In multivariate analysis, tumor volume larger than 33.5 cc (p = 0.029) and radioresistant histology (p = 0.047) were associated with increased risk of LF (p = 0.018). Target volume was not associated with increased risk of ARE (p = 0.511). CONCLUSIONS: We present our institutional experience treating large brain metastases using mask-based HF-GKRS, representing one of the largest studies implementing this platform and technique. Our LF and ARE compare favorably with the literature, suggesting that target volumes less than 33.5 cc demonstrate excellent control rates with low ARE. Further investigation is needed to optimize treatment technique for larger tumors.


Subject(s)
Brain Neoplasms , Radiosurgery , Humans , Radiosurgery/adverse effects , Radiosurgery/methods , Retrospective Studies , Brain Neoplasms/radiotherapy , Brain Neoplasms/surgery , Brain Neoplasms/pathology , Multivariate Analysis , Treatment Outcome
2.
Neurosurgery ; 93(1): 95-101, 2023 07 01.
Article in English | MEDLINE | ID: mdl-36722951

ABSTRACT

BACKGROUND: For patients with either an incompletely resected meningioma or recurrence after surgery, stereotactic radiosurgery is frequently used. MRI is typically used for stereotactic radiosurgery targeting, but differentiating tumor growth from postoperative change can be challenging. 68 Ga-DOTATATE, a positron emission tomography (PET) radiotracer targeting the somatostatin receptor type 2, has been shown to be a reliable meningioma biomarker. OBJECTIVE: To evaluate the impact of 68 Ga-DOTATATE on treatment planning in patients who had previously undergone meningioma resection. METHODS: We present a consecutive case series of 12 patients with pathology-proven meningioma who received a 68 Ga-DOTATATE PET between April 2019 and April 2021. Treatment planning was performed first using MRI. DOTATATE-PET images were then used to assess accurate tumor identification. RESULTS: Ten patients had WHO Grade 2 meningioma, and 2 patients had Grade 1 tumor. Eight patients had recurrent meningiomas, and 4 patients had newly diagnosed disease. Overall, 68 Ga-DOTATATE PET scans altered previously formulated treatment plans in 5 of 12 patients. In addition, 9 of 12 patients had disease foci not appreciated on MRI. CONCLUSION: In this series, incorporating 68 Ga-DOTATATE PET imaging had clinical utility for most patients in whom it was used. It proved particularly adept in demonstrating intraosseous meningiomas, differentiating recurrence from postoperative changes, and identifying subcentimeter disease foci. It is an imaging modality that our center will continue to use as a means of improving postoperative treatment plans after the surgical resection of meningiomas.


Subject(s)
Meningeal Neoplasms , Meningioma , Organometallic Compounds , Radiosurgery , Humans , Meningioma/diagnostic imaging , Meningioma/radiotherapy , Meningioma/surgery , Meningeal Neoplasms/diagnostic imaging , Meningeal Neoplasms/radiotherapy , Meningeal Neoplasms/surgery , Neoplasm Recurrence, Local/surgery , Positron-Emission Tomography/methods , Organometallic Compounds/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...