Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-34015437

ABSTRACT

The mosquito Aedes aegypti undertakes a shift in carbohydrate metabolism during embryogenesis, including an increase in the activity of phosphoenolpyruvate carboxykinase (PEPCK), a key gluconeogenic enzyme, at critical steps of embryo development. All eukaryotes studied to date present two PEPCK isoforms, namely PEPCK-M (mitochondrial) and PEPCK-C (cytosolic). In A. aegypti, however, these proteins are so far uncharacterized. In the present work we describe two A. aegypti PEPCK isoforms by sequence alignment, protein modeling, and transcription analysis in different tissues, as well as PEPCK enzymatic activity assays in mitochondrial and cytoplasmic compartments during oogenesis and embryogenesis. First, we characterized the protein sequences compared to other organisms, and identified conserved sites and key amino acids. We also performed structure modeling for AePEPCK(M) and AePEPCK(C), identifying highly conserved structural sites, as well as a signal peptide in AePEPCK(M) localized in a very hydrophobic region. Moreover, after blood meal and during mosquito oogenesis and embryogenesis, both PEPCKs isoforms showed different transcriptional profiles, suggesting that mRNA for the cytosolic form is transmitted maternally, whereas the mitochondrial form is synthesized by the zygote. Collectively, these results improve our understanding of mosquito physiology and may yield putative targets for developing new methods for A. aegypti control.


Subject(s)
Cytosol/metabolism , Embryonic Development , Gene Expression Regulation, Developmental , Gluconeogenesis , Glucose/metabolism , Oogenesis , Phosphoenolpyruvate Carboxykinase (ATP)/metabolism , Aedes , Amino Acid Sequence , Animals , Phosphoenolpyruvate Carboxykinase (ATP)/genetics , Phylogeny , Protein Isoforms , Sequence Homology
2.
Article in English | MEDLINE | ID: mdl-30266630

ABSTRACT

The mosquito Aedes aegypti is vector of several viruses including yellow fever virus, dengue virus chikungunya virus and Zika virus. One of the major problems involving these diseases transmission is that A. aegypti embryos are resistant to desiccation at the end of embryogenesis, surviving and remaining viable for several months inside the egg. Therefore, a fine metabolism control is essential to support these organisms throughout this period of resistance. The carbohydrate metabolism has been shown to be of great importance during arthropod embryogenesis, changing dramatically in order to promote growth and differentiation and in periods of resistance. This study investigated fundamental aspects of glucose metabolism in three stages of A. aegypti egg development: pre-desiccated, desiccated, and rehydrated. The activities of regulatory enzymes in carbohydrate metabolism such as pyruvate kinase, hexokinase and glucose 6-phosphate dehydrogenase were evaluated. We show that these activities were reduced in A. aegypti desiccated eggs, suggesting a decreased activity of glycolytic and pentose phosphate pathway. In contrast, gluconeogenesis increased in desiccated eggs, which uses protein as substrate to synthesize glucose. Accordingly, protein amount decreased during this stage, while glucose levels increased. Glycogen content, a major carbohydrate reserve in mosquitoes, was evaluated and shown to be lower in desiccated and rehydrated eggs, indicating it was used to supply energy metabolism. We observed a reactivation of carbohydrate catabolism and an increased gluconeogenesis after rehydration, suggesting that controlling glucose metabolism was essential not only to survive the period of desiccation, but also for subsequent larvae hatch. Taken together, these results contribute to a better understanding of metabolism regulation in A. aegypti eggs during desiccation periods. Such regulatory mechanisms enable higher survival rate and consequently promote virus transmission by these important disease vectors, making them interesting subjects in the search for novel control methods.


Subject(s)
Aedes/growth & development , Aedes/physiology , Embryo, Nonmammalian/physiology , Energy Metabolism , Gluconeogenesis , Glycolysis , Aedes/embryology , Aedes/enzymology , Animals , Desiccation , Embryo, Nonmammalian/enzymology , Embryonic Development , Gene Expression Regulation, Developmental , Glucosephosphate Dehydrogenase/genetics , Glucosephosphate Dehydrogenase/metabolism , Hexokinase/genetics , Hexokinase/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism , Isoenzymes/genetics , Isoenzymes/metabolism , Larva/enzymology , Larva/growth & development , Larva/physiology , Organism Hydration Status , Pentose Phosphate Pathway , Phylogeny , Pyruvate Kinase/genetics , Pyruvate Kinase/metabolism , Stress, Physiological , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...