Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Adv Mater ; : e2400627, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724020

ABSTRACT

Programmable and reconfigurable optics hold significant potential for transforming a broad spectrum of applications, spanning space explorations to biomedical imaging, gas sensing, and optical cloaking. The ability to adjust the optical properties of components like filters, lenses, and beam steering devices could result in dramatic reductions in size, weight, and power consumption in future optoelectronic devices. Among the potential candidates for reconfigurable optics, chalcogenide-based phase change materials (PCMs) offer great promise due to their non-volatile and analogue switching characteristics. Although PCM have found widespread use in electronic data storage, these memory devices are deeply sub-micron-sized. To incorporate phase change materials into free-space optical components, it is essential to scale them up to beyond several hundreds of microns while maintaining reliable switching characteristics. This study demonstrated a non-mechanical, non-volatile transmissive filter based on low-loss PCMs with a 200 µm×200 µm switching area. The device/metafilter can be consistently switched between low- and high-transmission states using electrical pulses with a switching contrast ratio of 5.5 dB. The device was reversibly switched for 1250 cycles before accelerated degradation took place. The work represents an important step toward realizing free-space reconfigurable optics based on PCMs. This article is protected by copyright. All rights reserved.

2.
J Clin Invest ; 134(1)2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37906287

ABSTRACT

Mineralocorticoid excess commonly leads to hypertension (HTN) and kidney disease. In our study, we used single-cell expression and chromatin accessibility tools to characterize the mineralocorticoid target genes and cell types. We demonstrated that mineralocorticoid effects were established through open chromatin and target gene expression, primarily in principal and connecting tubule cells and, to a lesser extent, in segments of the distal convoluted tubule cells. We examined the kidney-protective effects of steroidal and nonsteroidal mineralocorticoid antagonists (MRAs), as well as of amiloride, an epithelial sodium channel inhibitor, in a rat model of deoxycorticosterone acetate, unilateral nephrectomy, and high-salt consumption-induced HTN and cardiorenal damage. All antihypertensive therapies protected against cardiorenal damage. However, finerenone was particularly effective in reducing albuminuria and improving gene expression changes in podocytes and proximal tubule cells, even with an equivalent reduction in blood pressure. We noted a strong correlation between the accumulation of injured/profibrotic tubule cells expressing secreted posphoprotein 1 (Spp1), Il34, and platelet-derived growth factor subunit b (Pdgfb) and the degree of fibrosis in rat kidneys. This gene signature also showed a potential for classifying human kidney samples. Our multiomics approach provides fresh insights into the possible mechanisms underlying HTN-associated kidney disease, the target cell types, the protective effects of steroidal and nonsteroidal MRAs, and amiloride.


Subject(s)
Hypertension , Kidney Diseases , Rats , Humans , Animals , Mineralocorticoid Receptor Antagonists/pharmacology , Chromatin/genetics , Amiloride/pharmacology , Mineralocorticoids/pharmacology , Kidney , Kidney Diseases/genetics , Gene Expression Profiling
3.
ACS Photonics ; 10(10): 3576-3585, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37869555

ABSTRACT

Optical phase-change materials are highly promising for emerging applications such as tunable metasurfaces, reconfigurable photonic circuits, and non-von Neumann computing. However, these materials typically require both high melting temperatures and fast quenching rates to reversibly switch between their crystalline and amorphous phases: a significant challenge for large-scale integration. In this work, we use temperature-dependent ellipsometry to study the thermo-optic effect in GST and use these results to demonstrate an experimental technique that leverages the thermo-optic effect in GST to enable both spatial and temporal thermal measurements of two common electro-thermal microheater designs currently used by the phase-change community. Our approach shows excellent agreement between experimental results and numerical simulations and provides a noninvasive method for rapid characterization of electrically programmable phase-change devices.

4.
Small ; 19(50): e2304145, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37649187

ABSTRACT

Reconfigurable or programmable photonic devices are rapidly growing and have become an integral part of many optical systems. The ability to selectively modulate electromagnetic waves through electrical stimuli is crucial in the advancement of a variety of applications from data communication and computing devices to environmental science and space explorations. Chalcogenide-based phase-change materials (PCMs) are one of the most promising material candidates for reconfigurable photonics due to their large optical contrast between their different solid-state structural phases. Although significant efforts have been devoted to accurate simulation of PCM-based devices, in this paper, three important aspects which have often evaded prior models yet having significant impacts on the thermal and phase transition behavior of these devices are highlighted: the enthalpy of fusion, the heat capacity change upon glass transition, as well as the thermal conductivity of liquid-phase PCMs. The important topic of switching energy scaling in PCM devices, which also helps explain why the three above-mentioned effects have long been overlooked in electronic PCM memories but only become important in photonics, is further investigated. These findings offer insight to facilitate accurate modeling of PCM-based photonic devices and can inform the development of more efficient reconfigurable optics.

5.
Nat Nanotechnol ; 18(5): 456-463, 2023 May.
Article in English | MEDLINE | ID: mdl-37106051

ABSTRACT

Two-dimensional (2D) materials are promising candidates for future electronics due to their excellent electrical and photonic properties. Although promising results on the wafer-scale synthesis (≤150 mm diameter) of monolayer molybdenum disulfide (MoS2) have already been reported, the high-quality synthesis of 2D materials on wafers of 200 mm or larger, which are typically used in commercial silicon foundries, remains difficult. The back-end-of-line (BEOL) integration of directly grown 2D materials on silicon complementary metal-oxide-semiconductor (CMOS) circuits is also unavailable due to the high thermal budget required, which far exceeds the limits of silicon BEOL integration (<400 °C). This high temperature forces the use of challenging transfer processes, which tend to introduce defects and contamination to both the 2D materials and the BEOL circuits. Here we report a low-thermal-budget synthesis method (growth temperature < 300 °C, growth time ≤ 60 min) for monolayer MoS2 films, which enables the 2D material to be synthesized at a temperature below the precursor decomposition temperature and grown directly on silicon CMOS circuits without requiring any transfer process. We designed a metal-organic chemical vapour deposition reactor to separate the low-temperature growth region from the high-temperature chalcogenide-precursor-decomposition region. We obtain monolayer MoS2 with electrical uniformity on 200 mm wafers, as well as a high material quality with an electron mobility of ~35.9 cm2 V-1 s-1. Finally, we demonstrate a silicon-CMOS-compatible BEOL fabrication process flow for MoS2 transistors; the performance of these silicon devices shows negligible degradation (current variation < 0.5%, threshold voltage shift < 20 mV). We believe that this is an important step towards monolithic 3D integration for future electronics.

6.
Nat Genet ; 53(9): 1322-1333, 2021 09.
Article in English | MEDLINE | ID: mdl-34385711

ABSTRACT

The functional interpretation of genome-wide association studies (GWAS) is challenging due to the cell-type-dependent influences of genetic variants. Here, we generated comprehensive maps of expression quantitative trait loci (eQTLs) for 659 microdissected human kidney samples and identified cell-type-eQTLs by mapping interactions between cell type abundances and genotypes. By partitioning heritability using stratified linkage disequilibrium score regression to integrate GWAS with single-cell RNA sequencing and single-nucleus assay for transposase-accessible chromatin with high-throughput sequencing data, we prioritized proximal tubules for kidney function and endothelial cells and distal tubule segments for blood pressure pathogenesis. Bayesian colocalization analysis nominated more than 200 genes for kidney function and hypertension. Our study clarifies the mechanism of commonly used antihypertensive and renal-protective drugs and identifies drug repurposing opportunities for kidney disease.


Subject(s)
Hypertension/genetics , Kidney Tubules, Distal/pathology , Kidney Tubules, Proximal/pathology , Quantitative Trait Loci/genetics , Renal Insufficiency, Chronic/genetics , Base Sequence , Chromosome Mapping , Endothelial Cells/pathology , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Genotype , High-Throughput Nucleotide Sequencing , Humans , Polymorphism, Single Nucleotide/genetics , Quantitative Trait, Heritable , Renal Insufficiency, Chronic/pathology , Sequence Analysis, RNA , Single-Cell Analysis
7.
ACS Appl Mater Interfaces ; 12(38): 43250-43256, 2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32865960

ABSTRACT

Homogeneous ternary oxides of silicon-, niobium-, and molybdenum-aluminate were deposited by plasma-enhanced ALD using sequential metal precursor pulses prior to the oxidation step, to reduce interfacial defects usually observed in nanolaminate growth. The growth kinetics can be understood in terms of competitive adsorption. Trimethyl aluminum (TMA) is strongly chemisorbed to the growth surface and does not permit coadsorption of any of the other precursors; when we lead with a TMA pulse, the resulting film is always Al2O3. When we lead with the Si or Nb precursors, the growth surface is partially saturated, but open sites are available for TMA coadsorption. The Mo precursor is weakly chemisorbed and is largely displaced by a subsequent TMA dose. As compared to nanolaminate films of the constituent binary oxides, the interface state density is reduced by up to a factor of 5.

8.
Small ; 14(38): e1801483, 2018 09.
Article in English | MEDLINE | ID: mdl-30102452

ABSTRACT

A lack of inversion symmetry coupled with the presence of time-reversal symmetry endows 2D transition metal dichalcogenides with individually addressable valleys in momentum space at the K and K' points in the first Brillouin zone. This valley addressability opens up the possibility of using the momentum state of electrons, holes, or excitons as a completely new paradigm in information processing. The opportunities and challenges associated with manipulation of the valley degree of freedom for practical quantum and classical information processing applications were analyzed during the 2017 Workshop on Valleytronic Materials, Architectures, and Devices; this Review presents the major findings of the workshop.

9.
Clin Lung Cancer ; 18(2): e143-e149, 2017 03.
Article in English | MEDLINE | ID: mdl-27863923

ABSTRACT

INTRODUCTION: Pemetrexed inhibits folate-dependent enzymes involved in pyrimidine and purine synthesis. Previous studies of genetic variation in these enzymes as predictors of pemetrexed efficacy have yielded inconsistent results. We investigated whether red blood cell (RBC) total folate, a phenotypic rather than genotypic, marker of cellular folate status was associated with the response to pemetrexed-based chemotherapy in advanced nonsquamous non-small-cell lung cancer (NSCLC). MATERIALS AND METHODS: We conducted a prospective cohort study of patients with stage IV nonsquamous NSCLC receiving first-line chemotherapy containing pemetrexed. The pretreatment RBC total folate level was quantified using liquid chromatography mass spectrometry. We then compared the objective response rate (ORR) between patients with RBC total folate concentrations greater than and less than an optimal cutoff value determined from the receiver operating characteristic curve. A logistic regression model was used to adjust for age, sex, and the use of bevacizumab. RESULTS: The ORR was 62% (32 of 52 patients). Receiver operating characteristic analysis was used to establish that a RBC total folate cutoff value of 364.6 nM optimally discriminated between pemetrexed responders and nonresponders. Patients with RBC total folate < 364.5 nM had an ORR of 27% compared with 71% for patients with RBC total folate > 364.5 nM (P = .01). This difference persisted after adjusting for age, sex, and the use of bevacizumab (odds ratio, 0.07; 95% confidence interval, 0.01-0.57; P = .01). CONCLUSION: A low pretreatment RBC total folate was associated with an inferior response to pemetrexed-based chemotherapy in stage IV nonsquamous NSCLC. Larger, multicenter studies are needed to validate RBC total folate as a predictive marker of pemetrexed response.


Subject(s)
Adenocarcinoma/drug therapy , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Erythrocytes/drug effects , Folic Acid/administration & dosage , Lung Neoplasms/drug therapy , Vitamin B Complex/administration & dosage , Adenocarcinoma/pathology , Adult , Aged , Aged, 80 and over , Carboplatin/administration & dosage , Carcinoma, Non-Small-Cell Lung/pathology , Erythrocytes/metabolism , Female , Follow-Up Studies , Humans , Lung Neoplasms/pathology , Male , Middle Aged , Neoplasm Staging , Pemetrexed/administration & dosage , Prognosis , Prospective Studies , Survival Rate
10.
Free Radic Biol Med ; 88(Pt B): 108-146, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26122708

ABSTRACT

Nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) regulates the basal and stress-inducible expression of a battery of genes encoding key components of the glutathione-based and thioredoxin-based antioxidant systems, as well as aldo-keto reductase, glutathione S-transferase, and NAD(P)H: quinone oxidoreductase-1 drug-metabolizing isoenzymes along with multidrug-resistance-associated efflux pumps. It therefore plays a pivotal role in both intrinsic resistance and cellular adaptation to reactive oxygen species (ROS) and xenobiotics. Activation of Nrf2 can, however, serve as a double-edged sword because some of the genes it induces may contribute to chemical carcinogenesis by promoting futile redox cycling of polycyclic aromatic hydrocarbon metabolites or confer resistance to chemotherapeutic drugs by increasing the expression of efflux pumps, suggesting its cytoprotective effects will vary in a context-specific fashion. In addition to cytoprotection, Nrf2 also controls genes involved in intermediary metabolism, positively regulating those involved in NADPH generation, purine biosynthesis, and the ß-oxidation of fatty acids, while suppressing those involved in lipogenesis and gluconeogenesis. Nrf2 is subject to regulation at multiple levels. Its ability to orchestrate adaptation to oxidants and electrophiles is due principally to stress-stimulated modification of thiols within one of its repressors, the Kelch-like ECH-associated protein 1 (Keap1), which is present in the cullin-3 RING ubiquitin ligase (CRL) complex CRLKeap1. Thus modification of Cys residues in Keap1 blocks CRLKeap1 activity, allowing newly translated Nrf2 to accumulate rapidly and induce its target genes. The ability of Keap1 to repress Nrf2 can be attenuated by p62/sequestosome-1 in a mechanistic target of rapamycin complex 1 (mTORC1)-dependent manner, thereby allowing refeeding after fasting to increase Nrf2-target gene expression. In parallel with repression by Keap1, Nrf2 is also repressed by ß-transducin repeat-containing protein (ß-TrCP), present in the Skp1-cullin-1-F-box protein (SCF) ubiquitin ligase complex SCFß-TrCP. The ability of SCFß-TrCP to suppress Nrf2 activity is itself enhanced by prior phosphorylation of the transcription factor by glycogen synthase kinase-3 (GSK-3) through formation of a DSGIS-containing phosphodegron. However, formation of the phosphodegron in Nrf2 by GSK-3 is inhibited by stimuli that activate protein kinase B (PKB)/Akt. In particular, PKB/Akt activity can be increased by phosphoinositide 3-kinase and mTORC2, thereby providing an explanation of why antioxidant-responsive element-driven genes are induced by growth factors and nutrients. Thus Nrf2 activity is tightly controlled via CRLKeap1 and SCFß-TrCP by oxidative stress and energy-based signals, allowing it to mediate adaptive responses that restore redox homeostasis and modulate intermediary metabolism. Based on the fact that Nrf2 influences multiple biochemical pathways in both positive and negative ways, it is likely its dose-response curve, in terms of susceptibility to certain degenerative disease, is U-shaped. Specifically, too little Nrf2 activity will lead to loss of cytoprotection, diminished antioxidant capacity, and lowered ß-oxidation of fatty acids, while conversely also exhibiting heightened sensitivity to ROS-based signaling that involves receptor tyrosine kinases and apoptosis signal-regulating kinase-1. By contrast, too much Nrf2 activity disturbs the homeostatic balance in favor of reduction, and so may have deleterious consequences including overproduction of reduced glutathione and NADPH, the blunting of ROS-based signal transduction, epithelial cell hyperplasia, and failure of certain cell types to differentiate correctly. We discuss the basis of a putative U-shaped Nrf2 dose-response curve in terms of potentially competing processes relevant to different stages of tumorigenesis.


Subject(s)
Carcinogenesis/metabolism , NF-E2-Related Factor 2/metabolism , Oxidation-Reduction , Oxidative Stress/physiology , Signal Transduction/physiology , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...